Министерство образования и науки Украины

Украинская государственная академия железнодорожного транспорта

На правах рукописи

ПЕТРУШЕВСКАЯ АЛЛА АНДРЕЕВНА

УДК 624.016

НАПРЯЖЁННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ СТАЛЕБЕТОННЫХ БЕЗБАЛОЧНЫХ ПЕРЕКРЫТИЙ

Специальность 05.23.01 – строительные конструкции, здания и сооружения

Диссертация на соискание учёной степени кандидата технических наук

Научный руководитель:

Чихладзе Элгуджа Давидович

доктор технических наук, профессор Веревичева Марина Анатольевна кандидат технических наук, доцент

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
РАЗДЕЛ 1 ОБЗОР ИССЛЕДОВАНИЙ КОНСТРУКЦИЙ	ПЛОСКИХ
ПЕРЕКРЫТИЙ	9
1.1 Прочность бетона в условиях двухосного напряжённого сос	тояния 9
1.2 Анализ исследований конструкций плит с внешним армиров	ванием21
1.3 Конструкции безбалочных перекрытий	29
1.4 Обзор способов расчёта	33
Выводы и задачи исследований	41
РАЗДЕЛ 2 НАПРЯЖЁННО-ДЕФОРМИРОВАННОЕ И ПРЕДЕЛЬ) –
НОЕ СОСТОЯНИЕ БЕЗБАЛОЧНЫХ ПЕРЕКРЫТИЙ	43
2.1 Основные теоретические предпосылки	43
2.2 Расчёт тонких сталебетонных плит	44
2.2.1 Основные понятия	44
2.2.2 Перемещения и деформации в пластинке	45
2.2.3 Напряжения в пластинке	46
2.2.4 Внутренние усилия в пластинке	48
2.2.5 Дифференциальное уравнение изогнутой поверхности	54
2.2.6 Определение положения нейтральной поверхности	57
2.2.7 Алгоритм расчёта композитных плит	60
2.3 Численный анализ напряжённо-деформированного состояни	ЯК
комбинированной плиты, нагрузка на которую передаётся штамп	юм64
2.3.1 Численная реализация	68
2.4 Модель сталебетонной плиты для расчёта при помощи	
программного комплекса «ЛИРА»	75
2.4.1 Предпосылки расчёта	75
2.4.2 Моделирование и исследование сталебетонных б	Безбалочных
перекрытий	77
2.5 Расчёты по методу предельного равновесия	79

2.5.1	Несущая способность по нормальному сечению	79
2.5.2	2 Равномерно распределённая нагрузка	82
2.5.3	В Распределённая нагрузка по площади штампа	.83
2.5.4	4 Несущая способность сталебетонных плит по прочности контакта	
лист	га с бетоном	85
Выв	оды по разделу	89
PA3	ДЕЛ 3 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ФРАГМЕН-	
TOE	З СТАЛЕБЕТОННЫХ ПЕРЕКРЫТИЙ	90
3.1	Цели и задачи исследований	.90
3.2	Экспериментальные исследования сталебетонной плиты, опёртой	
на ч	етыре колонны в углах	90
3.3	Анализ результатов экспериментальных исследований и сравнение	
с тес	оретическими данными	110
	оды по разделу	
	ДЕЛ 4 ВНЕДРЕНИЕ И ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНО	
CTA	ЛЕБЕТОННЫХ ПЛИТ ПЕРЕКРЫТИЙ	125
4.1	Использование внешнего листового армирования в строительной	
прак	ктике	125
	Внедрение сталебетонных плит	
	Описание конструкции перекрытия весов	
4.3	Сравнение эффективности работы сталебетонных и железобетон-	
	плит	131
	оды по разделу	
	ВОДЫ	
	ІСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	
	ложенияложение А	
	ложение Б	
	ложение В	
		183

ВВЕДЕНИЕ

Современное проектирование требует Актуальность темы. обеспечения надёжности зданий и сооружений при одновременном снижении их материалоёмкости, стоимости и трудоёмкости на этапах эксплуатации. Таким требованиям проектирования, монтажа И удовлетворяют конструкции с внешним армированием листовой сталью. Улучшение вышеприведенных показателей достигается благодаря многофункциональному и рациональному использованию стального листа – как опалубки и закладных деталей, совмещению функции рабочей арматуры с защитными и изоляционными функциями, компактному расположению изгибаемого внешней стороне элемента растягивающих усилий. Наибольший эффект от внешнего армирования достигается в плитах перекрытий и покрытий, которые изгибаются в двух направлениях. Плоский стальной лист работает в условиях двухосного напряжённого состояния, благодаря чему повышается жёсткость и несущая способность сталебетонной плиты по сравнению с железобетонной при одинаковом расходе металла. Проблема расчёта сталебетонных плит на силовые воздействия на сегодняшний день заключается в необходимости учёта следующих факторов: неоднородного напряжённого состояния, особенностей опирания плит, нелинейности деформирования бетона в условиях плоского напряжённого состояния и его анизотропных свойств, зависимости жёсткостных характеристик от деформированного состояния, податливости контакта, произвольной нагрузки и т.д. В связи с этим разработка новых конструктивных решений И методики сталебетонных плит, учитывающих отмеченные факторы, и исследование их работы является актуальной задачей.

Связь работы с научными программами, планами, темами. Работа выполнена в рамках научных тем кафедры «Строительной механики и гидравлики» Украинской государственной академии железнодорожного

транспорта за 2009-2012 гг.: № 0106U004122 «Розробка теорії та методів розрахунку комбінованих конструкцій транспортних споруд»; № 0110U002127 «Розробка теорії та методів оптимізації несучих конструкцій транспортних споруд».

Цель исследования. Целью исследования задачи является разработка методов оценки напряжённо-деформированного состояния и определения несущей способности сталебетонных квадратных плит с различными условиями опирания на основании экспериментальнотеоретических исследований.

Поставленной цели соответствуют следующие основные задачи:

- 1. Провести аналитический обзор литературных данных по исследованию работы сталебетонных и сталежелезобетонных плит, методов их расчёта.
- 2. Разработать методику расчёта плит с внешним листовым армированием с учётом особенностей деформирования стального листа и бетона в условиях плоского напряжённого состояния при силовом воздействии.
- 3. Разработать конструкцию сталебетонной плиты, которая позволяла бы обеспечить совместную работу бетонного слоя и тонкого листа, совмещающего в себе качества опалубки и несущего элемента.
- 4. Разработать алгоритм и программу расчёта сталебетонных плит с различными условиями опирания, позволяющую оценить их напряжённо-деформированное и предельное состояние.
- 5. Провести экспериментальные исследования квадратных сталебетонных плит с разными условиями опирания и расположением анкерных упоров.
- 6. Разработать рекомендации для расчёта и проектирования сталебетонных плит и внедрить результаты работы в практику проектирования и строительства.

Объект исследования — деформирование и разрушение сталебетонных безбалочных плит перекрытия при кратковременном нагружении.

Предмет исследования — напряжённо-деформированное состояние сталебетонных квадратных плит перекрытия при различном шаге анкерных упоров и закреплении углов плиты.

Методы исследования — аналитические, численные и экспериментальные. Получены зависимости для описания напряжённо-деформирован-ного состояния сталебетонных плит при силовом воздействии. Сформулированы граничные условия, определяемые закреплением плиты. Экспериментально исследована работа плит перекрытия с различными условиями опирания и шагом анкерных упоров.

Научная новизна полученных результатов. Научная новизна настоящих исследований определяется следующими результатами:

- 1. Разработана математическая модель и методика численной оценки напряжённо-деформированного состояния сталебетонных плит с различными условиями опирания по углам при силовом воздействии.
- 2. Экспериментально получены зависимости нагрузка-деформация и нагрузка-прогиб для квадратных в плане сталебетонных плит перекрытий с различным шагом размещения анкерных упоров (с шагом 100 мм и 50 мм по перпендикулярам от центра плиты к середине кромки и от центра к углам по биссектрисам углов) и различными условиями опирания шарнирное опирание по углам и жёсткое закрепление по углам.
- 3. Получены экспериментальные данные о несущей способности, деформациях, напряжениях, внутренних усилиях в исследуемых конструкциях сталебетонных плит при действии статически приложенной нагрузки.
- 4. Предложена расчётная модель сталебетонного перекрытия для оценки напряжённо-деформированного состояния методом конечных элементов.

Практическая значимость полученных результатов. Предложенная методика расчёта позволяет определять напряженно-деформированное состояние и несущую способность сталебетонных плит с различными условиями опирания по углам при действии статически приложенной посредством штампа нагрузки.

Результаты диссертационной работы внедрены в учебный процесс Украинской государственной академии железнодорожного транспорта в виде программы расчёта напряжённо-деформированного состояния сталебетонных плит с различными условиями опирания на силовые воздействия, при дипломном проектировании, а также в конструктивных предложениях при проектировании платформы весов на УА ООО «КОДА».

Личный вклад соискателя.

- 1. Разработана математическая модель и методика численной оценки напряжённо-деформированного состояния сталебетонных плит с разными условиями опирания по углам при силовом воздействии.
- 2. Экспериментально получены зависимости нагрузка—деформация и нагрузка—прогиб для квадратных в плане сталебетонных плит перекрытия с разным шагом анкерных упоров (с шагом 100 мм и 50 мм по перпендикулярам от центра плиты к середине края и от центра к углам по биссектрисе углов) и с различными условиями опирания шарнирное опирание по углам и жёсткое защемление по углам.
- 3. Получены экспериментальные данные про несущую способность, деформации, напряжения, внутренние усилия в исследуемых конструкциях сталебетонных плит при действии статически приложенной нагрузки.
- 4. Предложена расчётная модель сталебетонного перекрытия для оценки напряжённо-деформированного состояния методом конечных элементов.

Апробация результатов диссертации. Основные результаты диссертационной работы докладывались и обсуждались на:

- 1. Научно-технических конференциях Украинской государственной академии железнодорожного транспорта (2010 –2012 г.г.).
- 2. Третьей международной научно-практической конференции «Науково-технічне та організаційно-економічне сприяння реформам у будівництві і житлово-комунальному господарстві» (г. Макеевка, 12–13 апреля 2012 г.).
- 3. Третьей международной научно-технической интернетконференции «Строительство, реконструкция и восстановление зданий городского хозяйства» (г. Харьков, 15 апреля – 15 мая 2012 г.).
- 4. Международной научно-практической конференции «Модернизация и научные исследования в транспортном комплексе» (г. Пермь, 26–28 апреля 2012 г.).
- 5. Международной научно-практической интернет-конференции «Современные проблемы и пути их решения в науке, транспорте, производстве и образовании 2012» (г. Одесса, 18–27 декабря 2012 г.).

Публикации. Основное содержание диссертации опубликовано в 13 научных трудах, из которых 9 статей в изданиях, рекомендованных МОН Украины, 3 тезиса докладов в сборниках материалов конференций, получен 1 патент Украины на полезную модель.

Структура диссертации. Диссертация состоит из введения, четырёх разделов, общих выводов, списка литературы и приложений. Диссертация изложена на 186 страницах и содержит 148 страниц основного текста, 3 таблицы, 72 рисунка, 251 наименований литературы, 4 приложения на 9 страницах.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Чихладзе Э.Д. Теория деформирования сталебетонных плит / Э.Д. Чихладзе, А.Д. Арсланханов // Совершенствование методов расчёта и проектирования конструкций и сооружений: сб. науч. трудов. Харьков, ХарГАЖТ, 1996. Вып. 27 С. 4 39.
- 2. Chikhladze E.D. Experimental Researches of Steel-Concrete Plates / E.D. Chikhladze, G.L. Vatulya // Shells and spatial structures: from resent past to the next millennium // Proceedings of the IASS 40th Anniversary Congress. Madrid, 1999. Vol. 1. P. 13 18.
- 3. Atan Y. Structural Linghtweiht Concrete Under Biaxial Compression / Y. Atan, F.O. Slate // JACI. 1973. Vol. 70. № 3. P.P. 182 186.
- 4. Берг О.Я. Физические основы теории прочности бетона и железобетона / О.Я. Берг М.: Госстройиздат, 1962. 96 с.
- Берг О.Я. Разрушение контакта между заполнителем и раствором при сжатии бетона / О.Я. Берг, Н.Г. Хубова, Е.Н. Щербаков // Изв. Вузов. Строительство и архитектура. – 1972. – № 8. – С. 13 – 17.
- 6. Берг О.Я. Исследование прочности и деформаций бетона при двухосном сжатии / О.Я. Берг, Н.В. Смирнов // Исследование прочности и долговечности бетона транспортных сооружений. М.: Транспорт, 1966. С. 79 108.
- 7. Шагин А.Л. Расчет эффективных многокомпонентных конструкций / А.Л. Шагин, В.М. Бондаренко М.: Стройиздат, 1987. 175 с.
- 8. Бондаренко В.М. Инженерные методы нелинейной теории железобетона / В.М. Бондаренко, С.В. Бондаренко М.: Стройиздат, 1982. 287 с.
- 9. Бондаренко В.М. Расчёт железобетонных плит и оболочек методом интегрального модуля деформаций / В.М. Бондаренко, А.И. Тимко, А.Л. Шагин Харьков: Изд. ХГУ, 1967. 86 с.

- 10. Гениев Г.А. Теория пластичности бетона и железобетона / Г.А. Гениев,
 В.Н. Киссюк, Г.А. Тюпин М.: Стройиздат, 1974. 316 с.
- Гвоздев А.А. Работа железобетона с трещинами при плоском напряжённом состоянии / А.А. Гвоздев, Н.И. Карпенко // Строительная механика и расчёт сооружений. 1965. № 2. С. 20 23.
- 12. Гвоздев А.А. Расчёт несущей способности конструкций по методу предельного равновесия / А.А. Гвоздев М.: Стройиздат, 1949. 280 с.
- 13. Гвоздев А.А. Прочность, структурные изменения и деформации бетона/ А.А. Гвоздев и др. М.: Госстройиздат, 1978. 296 с.
- Гвоздев А.А. К вопросу о теории железобетона / А.А. Гвоздев // Бетон и железобетон. 1980. № 4. С. 18 20.
- 15. Гвоздев А.А. Теоретическое и экспериментальное исследование работы железобетона с трещинами при плоском однородном и неоднородном напряженном состоянии / А.А. Гвоздев, Н.И. Карпенко, С.М. Крылов // Совершенствование расчета статически неопределимых железобетонных конструкций: Сб. научн. тр. / НИИЖБ; Под ред. А.А. Гвоздева. М.: Стройиздат, 1968. С. 5 43.
- Евдокимов В.И. Экспериментальные исследования бетона при двухосном сжатии / В.И. Евдокимов // Вопросы атомной науки и техники / Сер. Проектирование и строительство. 1978. Вып. 1 (1). С. 22 27.
- 17. Миренков А.Ф. Методические особенности исследования свойств бетона при двух- и трехосном сжатии / А.Ф. Миренков, В.И. Евдокимов // Вопросы атомной науки и техники. Вып. 1(4). 1976. С. 19 23.
- 18. Зайцев Ю.В. Моделирование деформаций и прочности бетона методами механики разрушения / Ю.В. Зайцев М.: Стройиздат, 1982. 196 с.
- Зайцев Л.Н. Расчёт прогибов железобетонных квадратных плит, заделанных по двум смежным сторонам и свободно опёртых по двум сторонам / Л.Н. Зайцев // Бетон и железобетон. 1964. № 7. С. 330–333.

- Карпенко Н.И. К построению условия прочности бетонов при неодноосных напряженных состояниях / Н.И. Карпенко // Бетон и железобетон. 1985. № 10. С. 35 37.
- 21. Карпенко Н.И. Об одной характерной функции прочности бетона при трёхосном сжатии / Н.И. Карпенко // Строительная механика и расчёт сооружений. 1982. № 2. С. 33 36.
- 22. Козачевский А.И. Модификация деформационной теории пластичности бетона и плоское напряжённое состояние железобетона с трещинами / А.И. Козачевский // Строительная механика и расчёт сооружений. 1983. № 5. С. 12 16.
- 23. Козачевский А.И. Аппроксимация экспериментальных данных многоосного напряжённо-деформированного состояния дилатационной моделью деформированной теории пластичности бетона / А.И. Козачевский, А.М. Зязин // Сопротивление материалов и теория сооружений. Киев, 1982. Вып. 41. С. 124 128.
- 24. Kupfer H. Behavior of Concrete Under Biaxial Stresses. Proceedings of the American Society of Civil Engineers / H. Kupfer, K. Gerstle // Journal of the Engineering Mechanics Division. − 1973. − Vol. 99. − № EM4. − P.P. 853 − 866.
- 25. Kupfer H. Behavior of Concrete under biaxial Stresses / H. Kupfer,
 H. Hilsdorf, H. Rush // JACI. 1969. Vol. 66. № 8. P.P. 656 666.
- 26. Лейтес Е.С. К деформирования построению теории учитывающей нисходящую ветвь диаграммы деформирования Е.С. Лейтес // Новые материала исследования элементов железобетонных конструкций. – М.: НИИЖБ, 1982. – С. 24 – 32.
- 27. Лейтес Е.С. К уточнению одного из условий прочности бетона / Е.С. Лейтес // Поведение бетонов и элементов железобетонных конструкций при воздействии различной длительности. М.: НИИЖБ Госстроя СССР, 1980. С. 37 40.

- 28. Лейтес Е.С. Построение модели деформирования бетона на основе теории пластического течения / Е.С. Лейтес // Строительная механика и расчёт сооружений. 1987. № 2. С. 36 39.
- 29. Лукша Л.К. Прочность трубобетона / Л.К. Лукша Минск: Высшая школа, 1977. 96 с.
- 30. Lin N. Stress-strain Response and Fracture of Concrete in Uniaxial and Biaxial Compression / N. Lin, A. Nilson, F.C. Slate // JACI. 1972. Vol. 69. № 5. P.P. 291 295.
- 31. Шагин А.Л. Об оценке работы бетона в условиях сложного напряжённого состояния / А.Л. Шагин // Тез. докл. обл. конф. Харьков, 1983. С. 28 30.
- 32. Шагин А.Л. К расчету бетонных и железобетонных конструкций, работающих в условиях сложного напряженного состояния / А.Л. Шагин // Прогрессивные конструктивные решения в промышленном и гражданском строительстве Харьковской области. Харьков, 1970. С.142–143.
- 33. Яшин А.В. Неодноосные напряжённо-деформированные состояния бетона / А.В. Яшин // Прочность, структурные изменения и деформации бетона; под ред. А.А. Гвоздева. М.: Стройиздат, 1978. С. 196 222.
- 34. Яшин А.В. Теория деформирования бетона при простом и сложном нагружении / А.В. Яшин // Бетон и железобетон. 1986. № 8. С. 39 42.
- 35. Ноткус А. О применении теории малых упругопластических деформаций и теоретическом обосновании условия прочности / А.- И.И. Ноткус, А.П. Кудзис // Железобетонные конструкции. Вильнюс, 1977. № 8. С. 21 30.
- 36. Гуровая Л.А. Экспериментальное исследование деформирования бетона в условиях двухосного сжатия / Л.А. Гуровая, Н.Д. Кошмай, В.С. Шмуклер // Реферативная информация о законченных научно-исследовательских работах в вузах Украинской / Строительство,

- архитектура, строительные материалы и изделия. 1976. Вып. 10. С. 24-27.
- 37. Рекомендации по определению прочностных и деформационных характеристик бетона при неодноосных напряжённых состояниях. М.: НИИЖБ, 1985. 72 с.
- 38. Чихладзе Э. Д. Несущая способность сталебетонных конструкций в условиях статического и динамического загружения: дис. ... доктора тех. наук: 05.23.01 / Э.Д. Чихладзе Харьков, 1985. 481 с.
- 39. Стороженко Л.И. Строительные конструкции из стальных труб, заполненных центрифугированным бетоном / Л.И. Стороженко, В.И. Ефи-менко, В.Ф. Пенц К.: Четверта хвиля, 2001. 144 с.
- 40. Фонов В.М. Прочность и деформативность трубобетонных элементов при осевом сжатии / В.М. Фонов, И.Г. Людковский, А.П. Нестерович // Бетон и железобетон. 1989. N = 1. C.4 6.
- 41. Санжаровский Р.С. Трубобетонные конструкции в строительстве / Р.С. Санжаровский // Промышленное строительство. 1979. № 5. С. 22-23.
- 42. Ахвердов И.Н. Основы физики бетона / И.Н. Ахвердов М.: Стройиздат, 1981. – 464 с.
- 43. Лолейт А.Ф. Новый проект норм // Доклад на I Всесоюзной конференции по бетону и железобетону 20-25 апреля 1930 г. в Москве / Тр. конф. М.: 1931.
- 44. Мурашев В.И. Трещиноустойчивость, жёсткость и прочность железобетона / В.И. Мурашев М.: Машстройиздат, 1950/1958. 268 с.
- 45. Ильюшин А.А. Пластичность / А.А. Ильюшин М.: АнСССР, 1963. 424 с.
- 46. Рейсс Э. Учёт упругой деформации в теории пластичности / Э. Рейсс // Теория пластичности. М.: Изд-во иностр. лит., 1948. С. 206 222.
- 47. Prandtl L. Spannungsverteilung in Plastichen Korpern / L. Prandtl // Proc. of 1 st Int. Congr. of Appl. Mech. 1924. P. 43 54.

- 48. Бич П.М. Деформативность бетонов при плоском напряжённом состоянии / П.М. Бич // Вопросы строительства и архитектуры. Минск, 1977, вып.7. С. 87 92.
- 49. Клованич С.Ф. Метод конечных элементов в нелинейной механике грунтов и бетонов / С.Ф. Клованич // Строительные конструкции // Межвед. н.-т. сб., вып. 61. т. 1 Киев: НИИСК, 2004.
- 50. Круглов В.М. Нелинейные соотношения и критерий прочности бетона в трёхосном напряжённом состоянии / В.М. Круглов // Строительная механика и расчёт сооружений. 1987. № I. С. 40 44.
- 51. Корсун В.И. Расчёт конструкций на температурные и силовые воздействия с учётом неоднородности свойств материалов: дис. ... докт. техн. наук / ДГАСА / В.И. Корсун Макеевка, 2004. 365 с.
- 52. Кричевский А.П. Расчёт железобетонных инженерных сооружений на температурные воздействия / А.П. Кричевский М.: Стройиздат, 1984. 148 с.
- 53. Круглов В.М. Об одном варианте деформационной теории пластичности бетона в шаговом расчёте конструкций методом конечных элементов / В.М. Круглов, А.И. Козачевский // Исслед. работы искусств. сооружений. Новосибирск, 1980. С. 15 19.
- 54. Ноткус А. Вариант единой теории пластичности для бетона и металла /
 А. Ноткус / Научн. тр. вузов Лит. ССР // Железобетонные конструкции.
 1980. Вып. 10. С. 73 82.
- 55. Яшин А.В. Критерий прочности и деформирования бетона при простом нагружении для различных видов напряженного состояния / А.В. Яшин // Расчёт и конструирование железобетонных конструкций. 1977. Вып. 39. С. 48 57.
- 56. Яшин А.В. Рекомендации по определению прочностных и деформационных характеристик бетона при неодноосных напряжённых состояниях / А.В. Яшин / НИИЖБ. М., 1985. 72 с.

- 57. Lin C.S. Nonlinear Analysis of Reinforced Concrete Shells of General Form / C.S. Lin, A.C. Scordelis // J. Struct. Div. ASCE. 1975. V. 101. ST3. P. 523 538.
- 58. Willam K.J. Constitutive Model for the Triaxial Behavior of Concrete / K.J. Willam, E.P. Warnke // Seminar of Concrete Structures Subjected to Triaxial Stresses, Bergamo, Italy. 1974. V. 19. May.17-19. P. 3/1.
- Ивлев В.В. Теория упрочняющегося пластического тела / В.В. Ивлев,
 Г.И. Быковцев М.: Наука, 1971. 231 с.
- 60. Карпенко Н.И. Общие модели механики железобетона / Н.И. Карпенко М.: Стройиздат, 1996. 416 с.
- 61. Карпенко Н.И. О построении более совершенной модели деформировании железобетона с трещинами при плоском напряженном состоянии / Н.И. Карпенко, С.Н. Карпенко // II Всероссийская (Международная) конференция по бетону и железобетону «Бетон и железобетон пути развития». 5-9 сентября, 2005, М. С. 431 444.
- 62. Карпенко Н.И. К построению физических соотношений в инкрементальной форме для расчёта железобетонных конструкций с трещинами / Н.И. Карпенко, С.Н. Карпенко // 1-я Всероссийская конференция по проблемам бетона и железобетона «Бетон на рубеже третьего тысячелетия», Книга 2, М., 2001. С. 711 717.
- Карпенко Н.И. Определяющие соотношения для железобетона с трещинами при термосиловых воздействиях / Н.И. Карпенко, С.Ф. Клованич // Строительная механиками и расчёт сооружений. 1983. № 2. С. 6 11.
- 64. Бидный Г.Р. Расчёт железобетонных конструкций методом конечных элементов / Г.Р. Бидный Кишинев: Штиинца, 1979. 224 с.
- Бидный Г.Р. Расчёт железобетонных конструкций при сложном нагружении методом конечных элементов / Г.Р. Бидный, С.Ф. Клованич, К.А. Осадченко // Строительная механика и расчёт сооружений. 1986. № 5. С. 22 26.

- 66. Городецкий А.С. Расчёт железобетонных балок-стенок с учётом образования трещин методом конечных элементов / А.С. Городецкий, В.С. Здоренко // Сопротивление материалов и теория сооружений. Киев: Будівельник, 1975. Вып. 57. С. 59 66.
- 67. Здоренко В.С. Расчёт железобетонных континуальных конструкций с учётом образования трещин методом конечных элементов / В.С. Здоренко // Сопротивление материалов и теория сооружений. Киев: Будівельник, 1976. Вып. 29. С. 89 101.
- 68. Клованич С.Ф. Механика железобетона в расчётах конструкций / С.Ф. Клованич // Строительные конструкции // Межвед. н.-т. сб., вып. 52. Киев: НИИСК, 2000. С. 107 115.
- 69. Клованич С.Ф. O расчёте пространственных железобетонных конструкций методом конечных элементов / С.Ф. Клованич, С.Н. Карпенко // Сборник трудов международной научно-практической «Бетон и железобетон в конференции третьем тысячелетии»: Ростовский государственный строительный университет. – Ростов-на-Дону, 2000. – С. 179 – 184.
- 70. Клованич С.Ф. Компьютерное моделирование процесса деформирования пространственных железобетонных конструкций с трещинами / С.Ф. Клованич // Вестник Одесского национального морского унив., вып.8, Одесса, 2002. С. 88 95.
- 71. Козак Л.А. Исследование процесса трещинообразования в осесимметричных железобетонных конструкциях при термосиловых воздействиях: дис. ... канд. техн. наук / Л.А. Козак Киев, 1981. 150 с.
- 72. Леви М.И. К расчёту железобетонных перекрытий и фундаментов МКЭ / М.И. Леви // Строительная механика и расчёт сооружений. 1979. № 5. С. 62 66.
- 73. Леньшин В.П. Расчёт железобетонных конструкций методом неоднородных конечных элементов / В.П. Леньшин // Строительная механика и расчёт сооружений, 1979. № 6. С. 38 41.

- 74. Максименко В.П. Применение нелинейного шагового процессора «Лира-Степ» для оценки реального состояния сооружений / В.П. Максименко // Будівельні конструкції. 2001. Вып. 54. С. 439 446.
- 75. Bathe K.-J. On Three-Dimensional Nonlinear Analysis of Concrete Structures / K.-J. Bathe, S. Ramaswamy // Nucl. Eng. and Des. − 1979. − V. 52. − № 3. − P. 385 − 409.
- Buyukozturk O. Constitutive modeling of Concrete in finite Element Analysis / O. Buyukozturk, S.S. Shareef // Comput. and Struct. 1985. V.
 21. № 3. P. 581 610.
- 77. Cervenka V. Constitutive Models for Cracked Reinforced Concrete /
 V. Cervenka // ACI Journal. 1985. V. 82. № 6. P. 877 882.
- 78. Thelandersson S. On the Multiaxial Behavior of Concrete Exposed to High Temperature / S. Thelandersson // Nucl. Eng. and Des. − 1983. − V. 75. − № 2. − P. 271 − 282.
- 79. Ленский В.С. Современные вопросы и задачи пластичности в теоретическом и прикладных аспектах / В.С. Ленский // Упругость и неупругость / МГУ. 1978. Вып. 5. С. 65 96.
- 80. Бажант 3. Эндохронная теория неупругости и инкрементальная теория пластичности / 3. Бажант // Механика деформируемых твёрдых тел. Направление развития. М.: Мир, 1983. С. 189 229.
- Кудашов В.И. Расчёт пространственных железобетонных конструкций с учётом физической нелинейности и трещинообразования / В.И. Кудашов, В.М. Устинов // Строительная механика и расчёт сооружений. 1981. № 4. С. 6 10.
- 82. Нахди П.М. Соотношения между напряжениями и деформациями в пластичности и термопластичности / П.М. Нахди // Механика. 1962, № I. С. 87 133.

- 83. Rudnicki J.W. Conditions for the Localization of Deformation in Pressure Sensitive Dilatant materials / J.W. Rudnicki, J.R. Rice // J. Mech. Phys. Solids. 1975. V. 23. P. 371 394.
- 84. Гришин А.В. Нелинейные динамические задачи расчёта портовых гидротехнических сооружений / А.В. Гришин, Е.Ю. Федорова Одесса: Изд-во ОНМУ, 2002. 125 с.
- 85. Клованич С.Ф. Вариант модели пластичности бетона / С.Ф. Клованич, И.Н. Мироненко // Будівельні конструкції // Міжвід. н.-т. зб., вип. 62. Т. 2. Київ: НДІБК, 2005. С. 18 24.
- 86. Клованич С.Ф. Неоднородные конечные элементы для расчёта железобетонных конструкций / С.Ф. Клованич, И.Н. Мироненко // Вісник ДонНАБА Макіївка: ДонНАБА, 2005. Вип. 2005-8(56). С. 147–152.
- 87. Клованич С.Ф. Семейство изопараметрических неоднородных конечных элементов / С.Ф. Клованич, И.Н. Мироненко // Материалы международной научн.-практ. конференции «Структурообразование, прочность и разрушение композиционных материалов и конструкций». Одесса: Вестник ОГАСА, 2005. Вып. 20. С. 155 164.
- 88. Hansen E. A two-surface anisotropic damage/plasticity model for plain concrete / E. Hansen, K. Willam, I. Carol // Proc. of Int. Conf. Fracture Mech. Of Concrete Materials, Paris, May 28-31, 2001. P.P. 549 556.
- 89. Hartl H. 3D finite element modeling of reinforced concrete structures / H. Hartl, C. Handel // Graz Univ. of Technol., Inst. Of Structural Concrete, Austria, 2000. P.P. 1 10.
- 90. Lutz L.A. Analysis of Stress in Concrete Hear a Reinforcing Bar Due To Bond and Transverse / L.A. Lutz // ACI Journal. 1979. № 10. P.P. 778 787.
- 91. Marti P. Limit analysis and design of cocncrete and masonry structures / P. Marti // 5- th Int. Conf. AMCM. 2005.

- 92. Podles K. Nonlocal elasto-plastic model for concrete / K. Podles, A. Truty // 5-th Int. Conf. AMCM. 2005.
- 93. Хубова Н.Г. Исследование влияния структуры бетона на напряжённодеформированное состояние бетонных конструкций: автореф. дисс. на соискание уч. степени канд. техн. наук. / Н.Г. Хубова – М., 1974. – 21 с.
- Уубова Н.Г. Анализ главных напряжений в двухкомпонентной пространственной модели бетона при сжатии / Н.Г. Хубова,
 Е.Н. Щербаков // Изв. вуз. Строительство и архитектура. 1973. № 9.
 С. 17 22.
- 95. Бамбура А.Н. Диаграмма «напряжения-деформации» для бетона при центральном сжатии. Вопросы прочности, деформативности и трещиностойкости железобетона: Сб. трудов. Ростов-на-Дону: РИСИ, 1980.– С. 19 22.
- 96. Бамбура А.М. Експериментальні основи прикладної деформаційної теорії залізобетону: автореф. дис. ... д-ра техн. наук. / А.М. Бамбура Харків, 2006. 39 с.
- 97. Бамбура А.М. Основні положення проектування бетонних та залізобетонних конструкцій за національним нормативним документом ДБН В.2.6.-98:2009 / А.М. Бамбура, О.Б. Гурківський, М.С. Безбожна, О.В. Дорогова // Науковий вісник ЛНАУ: зб. наук. праць. Луганськ, 2010. Вип. 14. С. 295 305.
- 98. Бамбура А.М. Основні положення національних нормативних документів ДБН В.2.6.-98:2009 та ДСТУ Б В.2.6-156:2010 щодо проектування бетонних та залізобетонних конструкцій / А.М. Бамбура, О.Б. Гур-ківський, М.С. Безбожна, О.В. Дорогова, І.Р. Сазонова // Ресурсоекономні матеріали, конструкції, будівлі та споруди: зб. наук. праць. Рівне, 2011. Вип. 22. С. 187 195.
- 99. ДБН В.2.6–98:2009 Конструкції будинків і споруд. Бетонні та залізобетонні конструкції. Основні положення. Київ.: Мінрегіонбуд України, 2011. 73 с. (с. 22, п. 3.1.7).

- 100. Веригин К.П. Некоторые вопросы прочности бетона при одномерном и двухмерном сжатии: автореф. дисс. на соискание уч. степени канд. техн. наук. / К.П. Веригин Харьков, 1962. 18 с.
- 101. Гломб Ю. Прочность бетона при двухосном сжатии / Ю. Гломб // Предварительно напряжённый бетон за рубежом: Сб. докл. III Междунар. конгресса в Берлине. М., 1961. С. 15 17.
- 102. Стороженко Л.И. Сталежелезобетонные конструкции: Монография / Л.И. Стороженко, О.В. Семко, В.И. Ефименко К.: Четверта хвиля, 1997. 160 с.
- 103. Bouda M. Konstrukcni system VIP / M. Bouda // Pozemni stavby. 1976. № 5. P.P. 204 209.
- 104. Ong K.C.G. Flexural Test of Steel-Concrete Open Sandwiches / K.C.G. Ong, G.C. Mays, A.R. Cusens // Magazine of Concrete Research. 1982. Vol. 34. № 120. P.P. 130 138.
- 105. Bellami G.I. Strength of Concrete Under Combined Stresses / G.I. Bellami //
 JACI. 1961. Vol. 58. № 4. P.P. 216 224.
- 106. Яшин А.В. Влияние неодноосных (сложных) напряженных состояний на прочность и деформации бетона, включая область, близкую к разрушению / А.В. Яшин // Прочность, жесткость и трещиностойкость железобетонных конструкций; под ред. А.А. Гвоздева. 1979. С. 187—202.
- Зырянов В.С. Направление линий излома в плитах опёртых по контуру/
 В.С. Зырянов // Бетон и железобетон. 1983. № 1 С. 41 42.
- 108. Писаренко Г.С. Сопротивление материалов деформированию и разрушению при сложном напряжённо состоянии / Г.С. Писаренко,
 А.А. Лебедев Киев: Наукова думка, 1969. 551 с.
- 109. Численные методы в теории упругости и теории оболочек /
 Н.П. Абовский, Н.П. Андреев, А.П. Деруга, В.И. Савченков. –
 Красноярск: Изд. Красноярского ун-та, 1986. 384 с.

- 110. Лехницкий С.Г. Теория упругости анизотропного тела, 2-е изд. / С.Г. Лехницкий М.: Наука, 1977. 416 с.
- 111. Карпенко Н.И. Теория деформирования железобетона с трещинами Н.И. Карпенко / М.: Стройиздат, 1976. 208 с.
- 112. Lawson R.M. Resent Trends in Composite Construction / R.M. Lawson // Concrete. 1986. № 2. Vol. 20. P.P. 5 7.
- Стрелецкий Н.Н. Сталежелезобетонные пролётные строения мостов. –
 2-е изд., перераб. и доп. / Н.Н. Стрелецкий М.: Транспорт, 1981. –
 360 с.
- 114. Людковский И.Г. Висячие сталежелезобетонные мембранные покрытия прямоугольного очертания в плане / И.Г. Людковский // Бетон и железобетон. 1986. № 9. С. 9 12.
- 115. Стрелецкий Н.Н. Сталежелезобетонные конструкции в нашей стране /
 Н.Н. Стрелецкий // Металлические конструкции. Работы школы
 Н.С. Стрелецкого. М., 1995. С. 126 132.
- 116. Чихладзе Э.Д. Напряжённо-деформированное состояние сталебетонных плит / Э.Д. Чихладзе, А.Д. Арсланханов // Строительная механика и расчёт сооружений. № 2. 1990. С. 22 26.
- 117. Арсланханов А.Д. Исследование напряжённо-деформированного и предельных состояний сталебетонных плит при статическом кратковременном загружении: дис. ... канд. техн. наук: 05.23.01 / А.Д. Арсланханов Харьков, 1989. 154 с.
- 118. Чихладзе Э.Д. Экспериментальные исследования сталебетонных плит /
 Э.Д. Чихладзе, А.Д. Арсланханов // Изв. Вузов. Строительство и архитектура. 1991. № 5. С. 125 128.
- 119. Клименко Ф.Е. Листовая арматура периодического профиля для железобетонных конструкций с внешним армированием / Ф.Е. Клименко, В.М. Барабаш // Бетон и железобетон. 1977. № 6. С. 19 22.

- 120. Барабаш В.М. Железобетонные балки с внешним полосовым армированием из алюминиевых сплавов / В.М. Барабаш, М.А. Павловская // Вестн. Львовского политехнического ин-та. 1986. N 203. C.10—13.
- 121. Клевцов В.А. Исследование закладных деталей узлов сопряжений сборных конструкций каркасов одноэтажных производственных зданий / В.А. Клевцов, Н.И. Весник // Предварительно напряжённые конструкции зданий и инженерных сооружений / Под ред. Г.Н. Бердичевского. М.: Стройиздат, 1977. С. 22 37.
- 122. Берестянская С.Ю. Напряжённо-деформированное состояние сталебетонных плит при силовых и температурных воздействиях: дис. ... канд. техн. наук: 05.23.01 / С.Ю. Берестянская Харьков, 2003. 214 с.
- 123. Бочагов В.П. Несущая способность и деформативность опертых по контуру плит из конструктивно-теплоизоляционного керамзитобетона с внешним листовым армированием: автореф. дис. на соискание ученой степени канд. техн. наук: спец. 05.23.01 «Строительные конструкции, здания и сооружения» / В.П. Бочагов Свердловск, 1982. 18 с.
- 124. Скоробогатов С.М. О применении метода предельного равновесия к расчёту несущей способности опёртых по контуру плит с внешним листовым армированием / С.М. Скоробогатов, В.П. Бочагов // Изв. Вузов. Сер. Строительство и архитектура. 1985. № 4. С. 1 5.
- 125. Бочагов В.П. Испытание натурного образца железобетонной плиты с внешним армированием / В.П. Бочагов, А.А. Фокин, А.П. Попов // Индустриализация нефтегазопромыслового строительства в Западной Сибири: Сб. науч. тр. / ВНИИСТ. М.: 1985. С. 12 19.
- 126. Бочагов В.П. Испытание малых образцов плит с двойным листовым армированием / В.П. Бочагов, А.А. Фокин, В.Н. Кучерюк, Л.И. Никина // Проектирование и строительство комплексно-блочных объектов

- нефтяной и газовой промышленности: Сб. научн. тр. / ВНИИСТ. М., 1984. С. 71-78.
- Кучерюк В.И. Расчёт многослойных пластин экспериментальнотеоретическим методом / В.И. Кучерюк, А.Д. Дорогин, В.П. Бочагов // Строительная механика и расчёт сооружений. 1983. – № 2. – С. 69 – 71.
- 128. Перекрытия по стальному профилирующему настилу. Сборник научных трудов. Под ред. А.П. Васильева. М.: НИИЖБ Госстроя СССР, 1983. С. 77.
- 129. Воронков Р.В. Некоторые особенности и конструктивные возможности применения листовой арматуры в железобетонных сооружениях / Р.В. Воронков // В сб.: Проектирование и расчёт строительных конструкций Л.: ЛДНТП, 1981. С. 68 75.
- 130. Воронков Р.В. Железобетонные конструкции с листовым армированием / Р.В. Воронков Л.: Стройиздат, 1975. 145 с.
- 131. Воронков Р.В. Водогазонепроницаемые железобетонные конструкции с листовой арматурой / Р.В. Воронков // Бетон и железобетон. 1970. № 8. С. 30 32.
- 132. Голосов В.Н. Расчёт конструкций с внешним армированием при действии поперечных сил / В.Н. Голосов, А.С. Залесов, Г.П. Бирюков // Бетон и железобетон. 1977. № 6. С. 14 16.
- 133. Кириленко В.Ф. Напряжённое состояние изгибаемых коробчатых элементов, выполненных из изотропных и конструктивноанизотропных материалов / В.Ф. Кириленко // Строительная механика и расчёт сооружений. № 6. М., 1983. С. 63 66.
- 134. Кириленко В.Ф. Напряжённо-деформированное состояние и расчёт прочности балок с вертикальной гофрированной стенкой / В.Ф. Кириленко, В.Ф. Беляев, Б.Н. Емельянов // Строительная механика и расчёт сооружений. 1989. № 6. С. 12 15.

- 135. Кириленко В.Ф. Напряжения при локальных нагрузках в тонкостенных балках с конструктивно анизотропными стенками / В.Ф. Кириленко // Механика композитных материалов. 1980. № 1. С. 73 77.
- 136. Клименко Ф.Е. Сталебетонные конструкции с внешним полосовым армированием / Ф.Е. Клименко Киев: Будівельник, 1984. 88 с.
- 137. Лобяк А.В. Напряжённо-деформированное состояние сталебетонных мембранных покрытий: дис. ... канд. техн. наук: 05.23.01 / А.В. Лобяк Харьков, 2001. 183 с.
- 138. Молодченко Г.А. Реконструкция и усиление зданий и сооружений / Г.А. Молодченко, В.И. Гринь Киев: КДО, 1993. 171 с.
- 139. Porter M.L. Analysis of Two-way Acting Composite / M.L. Porter // Journal of Structural Engineering. 1985. Vol. 111. № 1. P.P. 1 18.
- 140. Смолянюк Н.В. Напряжённо-деформированное и предельное состояние сталебетонных плит перекрытий: дис. ... канд. техн. наук: 05.23.01 / Н.В. Смолянюк Харьков, 2003. 194 с.
- 141. Стороженко Л.І. Безбалкові й часторебристі сталезалізобетонні перекриття / Л.І. Стороженко, О.В. Нижник // Зб. «Будівельні конструкції». К.: НДІБК, вип. 70, 2008. С. 29 36.
- 142. Стороженко Л.І. Дослідження та проектування сталезалізобетонних безбалкових і часторебристих перекриттів: монографія / Л.І. Стороженко, О.В. Нижник. Полтава: Дивосвіт, 2011. 300 с.
- 143. Стороженко Л.І. Результати експериментальних досліджень елементів збірних безбалкових сталезалізобетонних перекриттів / Л.І. Стороженко, О.В. Нижник, О.В. Клестов, Д.В. Костоглодов // Збірник наук. праць. Серія: Галузеве машинобудування, будівництво. Вип. 2(27). ПолтНТУ, Полтава. 2010. С. 49 53.
- 144. Стороженко Л.І. Збірні сталезалізобетонні безбалкові перекриття / Л.І. Стороженко, О.В. Нижник // Вісник Нац. ун-ту «Львівська політехніка»: Львів, 2010. № 664: Теорія і практика будівництва. С. 244 249.

- 145. Стороженко Л.І. Збірні сталезалізобетонні безбалкові перекриття / Л.І. Стороженко, О.В. Нижник // Сб. «Строительство, материаловедение, машиностроение», вып. 51. Днепропетровск: ПГАСА, 2010. С. 509 514.
- 146. Стороженко Л.І. Дослідження конструктивних систем сталезалізобетонних безбалкових перекриттів // Л.І. Стороженко, О.І. Лапенко, О.В. Нижник, С.О. Мурза // Будівельні конструкції: Міжвідомчий науково-технічний збірник наукових праць, ДП ДНДІБК. Вип. 74, кн. 1. Київ, ДП НДІБК, 2011. С. 198 203.
- 147. Стороженко Л.І. Особливості виготовлення та монтажу сталезалізобетонних безбалкових перекриттів / Л.І. Стороженко,
 О.В. Нижник // Строительство, материаловедение, машиностроение:
 Сб. науч. трудов. Вып. № 61. Дн-вск, ПГАСА, 2011. С. 435 440.
- 148. Стороженко Л.І. Розрахунок сталезалізобетонного безбалкового перекриття аналітичним методом / Л.І. Стороженко, О.І. Лапенко, О.В. Ниж-ник, С.О. Мурза // Журнал «Сучасне промислове та цивільне будівництво». Том 7, Номер 3. Макіївка, ДонНАБА, 2011. С. 165—172.
- Стороженко Л.І. Нові конструкції збірних сталезалізобетонних безбалкових перекриттів / Л.І. Стороженко, О.В. Нижник Сталезалізобетонні конструкції: дослідження, проектування, будівництво, експлуатація. Зб. наук. статей. Вип. 9. – Кривий Ріг: КТУ, $2011. - C.\ 207 - 207.$
- 150. Нижник О.В. Безбалкові та часторебристі сталезалізобетонні перекриття: монографія / О.В. Нижник. Полтава: Видавець Шевченко Р.В., 2012. 380 с.
- 151. Чернышова Е.В. Несущая способность сталебетонных плит, опёртых по полигональному контуру: дис. ... канд. техн. наук: 05.23.01 /
 Е.В. Чернышова Белгород, 2002. 131 с.

- 152. А.с. № 1647101 SU Al, E 04 B 5/40. Перекрытие / Э.Д. Чихладзе, А.Д. Арсланханов, С.А. Жуков, М.Е. Русанов, В.С. Шмуклер; Опубл. 07.05.91; Бюл. № 17. 3 с.
- 153. Патент № 2140500 RU МКИ Е 04 В 5.40. Сталебетонное перекрытие /
 Э.Д. Чихладзе, В.И. Колчунов, Е.В. Статинова. 1999 г.
- 154. Чихладзе Э.Д. Несущая способность сталебетонных плит /
 Э.Д. Чихладзе, А.Д. Арсланханов / Бетон и железобетон, 1990. № 10. –
 С. 30 31.
- Чихладзе Э.Д. Приближенная теория изгиба бетонных плит, усиленных стальным листом Э.Д. Чихладзе, А.Д. Арсланханов / Известия вузов.
 Строительство и архитектура, 1990. № 4. С. 6 10.
- 156. Чихладзе Э.Д. Несущая способность сталебетонных плит / Э.Д. Чихладзе, А.Д. Арсланханов / Известия вузов. Строительство и архитектура, 1989. № 4. С. 5 8.
- 157. Чихладзе Э.Д. Экспериментальные исследования сталебетонных балок
 Э.Д. Чихладзе, А.Д. Арсланханов, Э.И. Борисов / Известия вузов.
 Строительство, 2000. № 12. С. 4 7.
- 158. Шмуклер В.С. Напряженное состояние неодносвязных физических нелинейных сред / В.С. Шмуклер, И.В. Шмуклер // В сб. «Вопросы механики твердого деформированного тела» Харьков: ХАИ, 1989 С. 12 14.
- 159. Шмуклер В.С. Об одной возможности определения несущей способности изгибаемых железобетонных элементов / В.С. Шмуклер // Науковий вісник будівництва. Х., 2000. Вип. 9. С. 63 69.
- 160. Шмуклер В.С. Улучшение сходимости итерационных методов расчета железобетонных конструкций, находящихся в условиях сложного напряженного состояния / В.С. Шмуклер // Коммунальное хозяйство городов. Вып. 9 К.: "Техника", 1997. С. 16 21.
- 161. Шмуклер В.С. Экспериментальное исследование деформирования бетона в условиях двухосного сжатия / В.С. Шмуклер, Л.А. Гуровая,

- Н.Д. Кошмай // Реферат, информ. о законченных НИР в ВУЗах УССР. К., 1976. – Вып. 10. – С. 26 – 29.
- 162. Колбасин В.Г. Плиты с арматурой из профилированного стального настила / В.Г. Колбасин // Бетон и железобетон. 1980. №1. С. 11 13.
- 163. Петров И.А. Конструктивные решения комбинированных перекрытий с внешним армированием стальным профилированным листом / И.А. Петров, Р.И. Рабинович, Г.Е. Ханукова // Промышленное строительство. 1984. № 2. С. 11 14.
- 164. Рабинович Р.И. Расчёт двухслойных балок с упругопластическими составляющими стержнями / Р.И. Рабинович, Г.Г. Орлов // Строительная механика и расчёт сооружений. 1988. № 2. С. 24 28.
- 165. А.с. 846683 СССР. МКИ 4 Е 04 с 2/00. Строительная плита / Ю.И. Лубошников, В.В. Сурин, Б.В. Кучер (СССР). Опубл. 15.07.81. Бюл. № 26. 2 с.
- Багатурия Ф.И. Исследование монолитных ж.б. плит с профилированной листовой арматурой: автореф. дис. канд. техн. наук / Ф.И. Багатурия Л., 1975. 16 с.
- 167. А.с. 334347 СССР МКН 4 Е 04 в 1/62 Способ изготовления железобетонных водогазонепроницаемых конструкций с металлической листовой гидроизоляцией на подкладке из цементного раствора Р.В. Воронков (СССР). Опубл. 30.03.72. Бюл. № 12. 3 с.
- 168. Ржаницын А.Р. Составные стержни и пластинки / А.Р. Ржаницын М.: Стройиздат. 1986. 316 с.
- 169. Хрулев В.М. Прочность клеевых соединений / В.М. Хрулев М.: Стройиздат, 1973. — 81 с.
- Кисилиер М. Изгибаемые железобетонные элементы с приклеенной внешней стальной растянутой арматурой / М. Кисилиер // Энергетическое строительство. 1972. № 2. С. 47 51.

- 171. Кисилиер М.И. Клеевое соединение внешней листовой арматуры с бетоном при сдвиге / М.И. Кисилиер // Бетон и железобетон. 1977. № 6. С. 22—23.
- 172. Катин И.И. Работа закладных деталей при сдвиге и совместном действии сдвигающих сил и изгибающих моментов / И.И. Катин, А.Н. Стульчиков // Стыки сборных железобетонных конструкций / Под ред. А.П. Васильева. М.: Стройиздат, 1970. С. 118 161.
- 173. Гайдук Е.Н. Напряжённо-деформированное состояние и расчёт несущей способности сталебетонных элементов, работающих на внецентренное сжатие и изгиб: дис. ... канд. техн. наук: 05.23.01 / Е.Н. Гайдук Полтава, 1995. 153 с.
- 174. Глазунов Ю.В. Влияние способа приложения внешней продольной нагрузки на несущую способность сталебетонных коротких колонн прямоугольного сечения: дис. ... канд. техн. наук: 05.23.01 / Ю.В. Глазунов Харьков, 1997. 153 с.
- 175. Веревичева М.А. Исследования процесса разрушения бетонных и сталебетонных конструкций при интенсивных температурных воздействиях: дис. ... канд. техн. наук: 05.23.01 / М.А. Веревичева Харьков, 1998. 144 с.
- 176. Ватуля Г.Л. Несущая способность сталебетонных балок прямоугольного поперечного сечения, усиленных стальным шпренгелем: дис. ... канд. техн. наук: 05.23.01 / Г.Л. Ватуля Харьков, 1999. 160 с.
- 177. Мотовилов А.В. Прочность сталебетонных элементов прямоугольного поперечного сечения при кручении: дис. ... канд. техн. наук: 05.23.01 / А.В. Мотовилов Харьков, 1999. 141 с.
- 178. Адамян И.Р. Напряжённо-деформированное состояние сталебетонных брусьев прямоугольного поперечного сечения с составной обоймой при сжатии и изгибе: дис. ... канд. техн. наук: 05.23.01 / И.Р. Адамян Белгород, 2000. 152 с.

- 179. Орёл Е.Ф. Напряжённо-деформированное состояние сталебетонных плит с различными условиями опирания: дис. ... канд. техн. наук: 05.23.01 / Е.Ф. Орёл Харьков, 2006. 253 с.
- 180. Бартелеми Б., Крюппа Ж. Огнестойкость строительных конструкций.
 Пер. с франц. М.В. Предтеченского / Под ред. В.В. Жукова. М.:
 Стройиздат, 1985. 216 с.
- 181. Анпилов С.М. Здания с эффективным монолитным безбалочным каркасом. Экспериментальные и теоретические исследования, методы расчёта и возведения: автореф. дис. ... д-ра техн. наук / С.М. Анпилов. Самара, 2005. 35 с.
- 182. А.с. 2179612 RU, МКП E04B5/43. Безбалочное перекрытие / С.М. Анпилов (RU). 2000131866/03; заявл. 18.12.2000; опубл. 20.02.2002.
- 183. А.с. 2194825 RU, МКП Е04В5/43. Стыковое соединение безбалочного железобетонного перекрытия с колонной / С.М. Анпилов, Г.В. Мурашкин (RU). 2000126438/03; заявл. 20.10.2000; опубл. 20.12.2002.
- 184. Пат. на полезную модель РФ №2187607 Е04В5/43 Безбалочное перекрытие. Авт.: С.М. Анпилов, заявка 2000126535/03, опубл. 20.08.2002.
- 185. А.с. 2244076 RU, МКП Е04В5/43. Стыковое соединение безбалочного монолитного железобетонного перекрытия с колонной / В.В. Власов, В.Г. Мурашкин, А.В. Травин (RU). 20031128988/03; заявл. 30.04.2003; опубл. 10.01.2005.
- 186. Дорофеев В.С. Модель деформирования изгибаемых железобетонных элементов / В.С. Дорофеев, А.В. Ковров, А.В. Ковтуненко. Р.Э.Чай-ковский, Т.А. Максимова // Будівельні конструкції: Міжвідомчий науково-техн. збірник наук. праць. Вип. 74: В 2-х кн.: Книга 1. ДП НДІБК, 2011. С. 336 343.
- 187. Дорофеев В.С. Результаты численных исследований фрагментов монолитных безбалочных бескапительных перекрытий /

- В.С. Дорофеев, Д.О. Бондаренко // Будівельні конструкції: Міжвідомчий науково-техн. збірник наук. праць. Вип. 74: В 2-х кн.: Книга 1.-ДП НДІБК, 2011.-С. 563-570.
- 188. Дорофеев В.С. Расчёт изгибаемых элементов с учётом полной диаграммы деформирования бетона: монография / В.С. Дорофеев, В.Ю. Барданов. Одесса: ОГАСА, 2003. 210 с.
- 189. Залесов А.С. Практический метод расчёта железобетонных конструкций по деформациям / А.С. Залесов, В.В. Фигаровский. М.: Стройиздат, 1976. 101 с.
- 190. Климов Ю.А. Расчёт прочности элементов при действии поперечных сил / Ю.А. Климов // Бетон и железобетон. 1988. № 4. С. 33 35.
- 191. Мурашкин В.Г. Влияние усадочных деформаций на работу безригельного монолитного перекрытия / В.Г. Мурашкин // Изв. ТулГУ. Сер. Технология, механика и долговечность строительных материалов конструкций и сооружений. Вып. 2. Тула: ТулГУ, 2001. С. 86 90.
- 192. Мурашкин В.Г. Испытание моделей стыка колонн и перекрытия в монолитных зданиях / В.Г. Мурашкин // Актуальные проблемы в строительстве и архитектуре. Образование, наука, практика: материалы регионал. 59-й науч.-техн. конф. Самара, 2002. С. 56 58.
- 193. Мурашкин В.Г. Совершенствование конструкции стыка колонны и перекрытия в монолитном безбалочном каркасе: дисс. ...канд. техн. наук / В.Г. Мурашкин. Самара, 2002. 124 с.
- 194. Вахненко П.Ф. Залізобетонні конструкції / П.Ф. Вахненко, А.М. Павліков, О.В. Горик, В.П. Вахненко. К.: Вища шк., 1999. 508 с.
- 195. Павліков А.М. Методика дослідження напружено-деформованого стану та несучої здатності плити безригельно-безконсольно-безкапітельної конструктивної системи / А.М. Павліков. С.С. Жарий // Ресурсоекономні матеріали, конструкції, будівлі та споруди. Зб. наук. Праць. Вип. 21. Рівне. 2011. С. 264–269.

- 196. Пат. на полезную модель РФ №73891 Плитная железобетонная конструкция Авторы: Д.А. Пекин, А.Л. Мочалов, заяв. №2006133624, зарег. 10.06.2008.
- 197. Пекин Д.А. Плитная сталежелезобетонная конструкція / Д.А. Пекин // Научное издание. М.: Изд-во АСВ, 2010. 440 с.
- 198. Савицкий Н.В. Плоское сборно-монолитное перекрытие / Н.В. Савицкий, К.В. Баташева, Е.Л. Токарь // Сб. научн. трудов. Строительство, материаловедение, машиностроение. № 37. «Инновационные технологии жизненного цикла объектов жилищно-гражданского, промышленного и транспортного назначения». Днепропетровск: ПГАСА, 2006. С. 413 418.
- 199. Савицкий Н.В. Рациональная система плоского сборно-монолитного перекрытия / Н.В. Савицкий, К.В. Баташева, Е.Л. Токарь, Т.Д. Никифорова, А.Н. Зинкевич, О.Г. Зинкевич // Сб. научн. трудов. Строительство, материаловедение, машиностроение. №47. Дн-вск: ПГАСА, 2008. С. 521—525.
- 200. Савицкий Н.В. Обоснование выбора плоского сборно-монолитного перекрытия ПГАСА / Н.В. Савицкий, Е.Л. Буцкая // Строительство, материаловедение, машиностроение: Сб. науч. трудов. Вып. №56. Днвск: ПГАСА, 2010. С. 396 402.
- 201. Савицкий Н.В. Плоское железобетонное сборно-монолитное перекрытие / Н.В. Савицкий, Е.Л. Буцкая // Вісник національного університету «Львівська політехніка» Вип. №662 «Теорія і практика будівництва», 2010. С. 323 327.
- 202. Онищенко О.Г. Високоефективні технології та комплексні конструкції в промисловому й цивільному будівництві / О.Г. Онищенко, С.Ф. Пічугін, В.О. Онищенко, Л.І. Стороженко, О.В. Семко, Ю.С. Слюсаренко, І.А. Ємельянова, О.М. Ландар. Полтава: ПФ «Форміка», 2010. 452 с.

- 203. Семко О.В. Надійність сталезалізобетонних конструкцій: автореф. ... дис. д-ра техн. наук: 05.23.01 / О.В. Семко. ПолтНТУ, Полтава, 2006. 34 с.
- 204. Яров В.А. Безригельные монолитные перекрытия многоэтажных зданий с колоннами крестового сечения / В.А. Яров, К.В. Скрипальщиков // Вестник ТГАСУ № 2, Томск. 2009. С. 97—101.
- 205. Albrecht Christian Wirksamkeit örtlicher Bewehrungselemente zur Querkrafttragfähigkeit von Deckenplatten mit integrierten Leitungsführungen / Albrecht Christian, Schnell Jürgen // Artikel aus der Zeitschrift: Beton- und Stahlbetonbau. 2011. S. 522 530.
- 206. Alfons Goris Stahlbetonbau aktuell 2010 / Alfons Goris, Josef Hegger // Praxishandbuch Publisher: Bauwerk Verlag Gmbh (Nov 2009) 2010. S. 760.
- 207. Andreas Heuer Dreidimensionale Materialmodellierung von Stahlbeton // Wissenschaft, Band 19 Fraunhofer IRB Verlag. 2007. 198 p.
- 208. Bollinger K. Load-Carring Behavior and Reinforcement of Axisymmetrically Loaded Reinforcement Concrete Plates / K. Bollinger // Doctoral Thesis Abteilung Bauwesen der Universitat Dortmund, Germany. 1985. 262 p.
- 209. John Wiley Design of Reinforced Concrete. 6th Edition, International Edition, 2004. 752 p.
- 210. Johnson, R.P. Composite structures of steel and concrete beams, slabs, columns, and frames for buildings. Blackwell Publishing: Wiley-Blackwell, 2004. 248 p.
- 211. Hallgren M. / Doctoral thesis Royal Institute of Technology, Stockholm, Sweden, 1996. 206 p.
- 212. Kinnunen S. Punching of Concrete Slabs without Shear Reinforcement / S. Kinnunen, H. Nyllgren // Transactions of the Royal Institute of Technology, N 158, Stockholm, Sweden, 1960. 112 p.

- 213. SIA 262. Code for Concrete Structures, Swiss Society of Engineers and Architects, Zurich, Switzerland, 2003. 94 p.
- 214. P.C. Varghese Building construction. Publisher: Phi Learning, 2009. 472 p.
- 215. Галеркин Б.Г. Упругие тонкие плиты / Б.Г. Галеркин М.: Госстройиздат, 1934. 370 с.
- 216. Тимошенко С.П. Пластинки и оболочки / С.П. Тимошенко, С. Войновский-Кригер – М.: Физматгиз, 1963. – 636 с.
- 217. Калманок А.С. Расчёт пластинок / А.С. Калманок М.: Госстройиздат, 1959. 212 с.
- 218. Калманок А.С. К расчёту железобетонных плит по методу предельного равновесия / А.С. Калманок // Исследования по теории сооружений / Под ред. А.А. Гвоздева. М.: Госстройиздат, 1957. Вып. 7. С. 315 322.
- 219. Ржаницын А.Р. Предельное равновесие пластинок и оболочек / А.Р. Ржаницын М.: Наука, 1983. 288 с.
- 220. Ржаницын А.Р. Расчёт сооружений с учётом пластических свойств материалов, 2-е изд. / А.Р. Ржаницын М.: Госстройиздат, 1954. 288 с.
- 221. Дубинский А.М. Расчёт несущей способности железобетонных плит / А.М. Дубинский – Киев: Госстройиздат, 1961. – 182 с.
- 222. Королев А.Н. Способ расчёта прогибов железобетонных плит опёртых по контуру и безбалочных перекрытий при действии кратковременной нагрузки / А.Н. Королев, С.М. Крылов // Труды ин-та / НИИЖБ. Исследование прочности, жёсткости и трещиностойкости железобетонных конструкций. 1962. Вып. 26. С. 59 199.
- 223. Вилен Ф.И. К расчёту прогибов железобетонных плит при действии кратковременной нагрузки / Ф.И. Вилен // Строительные конструкции. Киев, 1967. Вып. VI. С. 32 44.

- 224. Молодченко Г.А. Расчёт цилиндрических стен силосов с радиальными перегородками / Г.А. Молодченко // Коммунальное строительство городов: Научн.-техн. сб. вып. 20. К.: Техника, 1999. С.31 37.
- 225. Лившиц Я.Д. Расчёт железобетонных плит с учётом трещинообразования и ползучести / Я.Д. Лившиц, М.М. Онищенко // Строительная механика и расчёт сооружений. 1962. № 6. С. 6 11.
- 226. Байков В.И. Исследование железобетонных плит на ЭВМ Урал-2 с учётом действительной жёсткости на кручение: Сб. докл. VI конференции по бетону и железобетону / В.И. Байков, В.Ф. Владимиров М.: Стройиздат, 1966. С. 3 9.
- 227. Мельникова Л.А. Расчёт тонких железобетонных плит с учётом двухосной ползучести и различно расположенных трещин / Л.А. Мельникова // Расчёт строительных конструкций: Сб. науч. тр. М.: Стройиздат, 1973. С. 9 19.
- 228. Бильченко А.В. Экспериментальная проверка и исследование параметров теории деформирования железобетонных плит с трещинами, работающих в двух направлениях / А.В. Бильченко, Н.И. Карпенко // Прочность и жёсткость железобетонных конструкций: Сб. научн. тр. / НИИЖБ. М.: Стройиздат, 1971. С. 98 117.
- 229. Методы расчёта стержневых систем, пластин и оболочек с использованием ЭВМ / А.В. Александров, Б.Я. Лащеников, Н.Н. Шапошников; Под ред. А.Ф. Смирнова. Часть 1 и 2. М.: Стройиздат, 1976.
- 230. Смирнов В.А. Расчёт пластин сложного очертания / В.А. Смирнов М.: Стройиздат, 1978. 300 с.
- 231. Карпенко Н.И. Расчёт железобетонных плит с трещинами с помощью ЭЦВМ / Н.И. Карпенко и др. // Вычислительная и организационная техника в строительстве и проектировании. Серия II: Автоматизация строительного проектирования. Вып. 2. М.: Гипротис, 1967. С. 21 26.

- 232. Проценко А.М. Решение задачи об изгибе железобетонных плит / А.М. Проценко, Н.А. Лосин // Строительная механика и расчет сооружений. -1979. № 6. C. 35 38.
- 233. Вісник Одеського національного морського університету: Сб. наук. праць. Вип. 10. Одесса, 2003. 242 с.
- 234. Лехницкий С.Г. Анизотропные пластинки / С.Г. Лехницкий М.: Гостехиздат, 1957. 2-е изд 464 с.
- 235. Кулагин А.А. К расчёту гладких железобетонных плит перекрытий с учётом процесса трещинообразования А.А. Кулагин, А.Б. Шумилин / Строительная механика и расчёт сооружений, 1979. № 2. С. 24 27.
- 236. Стрельбицкая А.И. Изгиб прямоугольных пластин за пределом упругости А.И. Стрельбицкая, В.А. Колгодин, С.И. Матошко Киев: Наукова думка, 1971. 244 с.
- 237. Жемочкин Б.Н. Теория упругости / Б.Н. Жемочкин. М.: Госстройиздат, 1957. 256 с.
- 238. Коллатц Л. Численные методы решения дифференциальных уравнений: Пер.с нем. / Л. Коллатц М.: Иностранная литература, 1953. 459 с.
- 239. Канторович Л.В. Приближённые методы высшего анализа / Л.В. Канторович, В.И. Крылов М.: Физматгиз, 1962. 708 с.
- 240. Амензаде Ю.А. Теория упругости / Ю.А. Амензаде. М.: Высшая школа, 1971. 288 с.
- 241. Патент 1292450 Великобритания, МКИ 4 EO4 c2/26. Способ соединения бетона с металлом / H.L. Chaim, Technion Research and Development Faundation LTD. Psh. 11.10.72; HKH EIW. 3 p.
- 242. Городецкий А.С. Компьютерные модели конструкций / А.С. Городецкий, И.Д. Евзеров. К.: издательство «Факт», 2005. 344 с.
- 243. А.С. Информационные технологии расчёта и проектирования строительных конструкций. Учебное пособие / А.С. Городецкий, В.С. Шмуклер, А.В Бондарев. Харьков: НТУ «ХПИ», 2003. 889 с.

- 244. Конструкції будинків і споруд. Вироби будівельні бетонні та залізобетонні збірні. Методи випробувань навантаженням. Правила оцінки міцності, жорсткості та тріщиностійкості: ДСТУ Б В.2.6-7-95 (ГОСТ 8829-94). [Чинний від 1996-01-01] К.: Державний комітет України у справах містобудування і архітектури, 1997. 45 с. (Державний стандарт України).
- 245. Будівельні матеріали. Бетони. Методи визначення міцності за контрольними зразками: ДСТУ Б В.2.7-214:2009. [Чинний від 2010-09-01]. –К.: Мінрегіонбуд України, 2010. 43 с. (Національний стандарт України).
- 246. Сталь вуглецева звичайної якості. Марки: ДСТУ 2651:2005/ГОСТ 380-2005. [Чинний від 2005-11-25]. К.: Держспоживстандарт України, 2006. 22 с.— (Національний стандарт України).
- 247. Васильев А.П. Состояние и перспективы развития конструкций с внешним листовым армированием сталежелезобетонных конструкций / А.П. Васильев и др. // Материалы совета по координации научно-исследовательских работ в области бетона и железобетона. М.: НИИЖБ, 1980. С. 14 26.
- 248. Воронков Р.В. Опыт проектирования и строительства опускного колодца диаметром 66,1 м с глубиной погружения 70 м / Р.В. Воронков, И.П. Любарова Л.: ЛДНТП, 1979. 128 с.
- 249. Железобетонные защитные оболочки АЭС / Г.К. Хайдуков и др. М.: Атомиздат, 1978. 128 с.
- 250. А.с. 647425 СССР, МКИ 4 Е 04 с 2/00. Строительная плита и способ её изготовления / Е.Н. Кузьмин (СССР). Опубл. 15.02.79. Бюл. №6. 2 с.
- 251. Байков В.Н. Железобетонные конструкции: Общий курс. Учебник для вузов. 5-е изд., перераб. и доп. / В.Н. Байков, Э.Е. Сигалов М.: Стройиздат, 1991. 767 с.