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Abstract: Microgrid-systems with alternative energy sources in which multilevel inverters are used are becoming more widespread. 

Possible circuit implementations of multilevel inverters for thus systems are shown. A comparative analysis of the energy parameters of 

multilevel inverters using various modulation algorithms is presented. important requirement of multilevel voltage inverters is to ensure high 

quality output voltage, as well as ensuring minimum power loss and maximum efficiency. An overview of known modulation algorithms for 

output voltage generation in multilevel inverters is presented. The analysis of existing algorithms was performed and the choice of the 

optimal algorithm for use in the scheme of solar power plants was carried out. 
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1. Introduction 

 

Researchers are increasingly paying attention to alternative 

power sources [1, 2]. A wind power plant is designed to convert the 

kinetic energy of a wind stream into mechanical energy of rotation 

of the rotor with its subsequent conversion into electrical energy [3, 

4]. Schematic diagram of a wind farm is shown in Fig. 1. 

 

 
 

Fig. 1. Schematic diagram of a wind farm 

 

A solar power plant is designed to convert solar radiation into 

electrical energy [5, 6]. The most common type of solar power 

plants is based on flat photovoltaic modules of single crystalline or 

polycrystalline type, which provide conversion of solar radiation to 

direct current. Depending on the circuit used, the direct current can 

be inverted to AC or stabilized to charge the batteries [7, 8]. 

Schematic diagram of a solar power plant is shown in Fig. 2. 

 

 
 

Fig. 2. Schematic diagram of a solar power plant 

 

The peculiarity of a solar power plant is that a large number of 

solar panels can be connected in series. In this case, the voltage on 

the solar panels, depending on the degree of illumination is variable 

[9, 10]. 

The task of the conversion system of both solar and wind 

power plants is the formation of sinusoidal output voltages with 

stable amplitude and frequency [11]. 

Different types of semiconductor converters as well as 

different control systems can be used to form a sinusoidal output 

voltage [12, 13]. 

At the same time, the urgent task is to create and research 

transformer systems that provide the creation of autonomous power 

supply systems with stable voltage. 

 

2. The power part – conversion systems 

 

It is possible to use different topologies of semiconductor 

converters in microgrid systems with alternative power sources [14, 

15]. The most common topologies are as follows: multilevel 

inverters with fixed diodes (Fig. 3), modular multilevel inverters 

(Fig. 4), cascade multilevel inverters (Fig. 5). Each of these 

topologies has its advantages and disadvantages [16, 17]. 

 

 
 

Fig. 3. Multilevel inverter with fixed diodes 

 

Advantages of multilevel inverter with fixed diodes include 

adjusting the amplitude of the first harmonic of the output current, 

which is necessary for scalar and vector control. At the same time, 

the disadvantages include high switching frequency of the power 

keys, which leads to the heating of semiconductor elements, parts of 

the isolation of the converter, increasing the dynamic losses and 

consequently reducing the efficiency of the converter. Other hybrid 

control systems are known, such as: 

– phase disposition; 

– phase opposition disposition; 

– alternate phase opposition disposition; 

– inverted sine carrier. 
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Fig. 4. Modular multilevel inverter 

 

 
 

Fig. 5. Cascade multilevel inverter 

 

One of the basic requirements for multilevel inverters is to 

provide high sinusoidal output voltage and output current. 

Particularly relevant requirements for the form of output voltage for 

converters that operate as a power source for their own power 

supply [18, 19]. 

Therefore, the most critical requirements for the output 

inverter are: 

– maximum efficiency; 

– increased reliability (work in case of failure); 

– providing maximum sinusoidal output voltage. 

In this case, the realized parameters depend not only on the 

applied power scheme, but also on the applied modulation 

algorithm [20, 21]. 

 

3. Modulation algorithms in multilevel inverters 

 

One of the most important parameters of multilevel inverters is 

the sinusoidality of output voltage. There are quite a number of 

different modulation algorithms that allow to obtain different 

sinusoidality of the output voltage and different contents of higher 

harmonics [22, 23]. 

The sine wave of the output voltage in multilevel inverters is 

accepted to be estimated by the total harmonic distortion (THD), 

which is an integral indicator of sine wave, which determines the 

rms content of higher harmonics [24, 25]. 

The realized sinusoidality of the output voltage are directly 

dependent on the modulation type implemented. There are many 

different modulation algorithms for output voltage generation in 

multilevel inverters. The most common of them are: various 

variations of sinusoidal PWM (level-shifted, phase-shifted, level-

phase-shifted), space-vector PWM, amplitude modulation, etc. [26, 

27]. At the same time, all these algorithms cause different 

sinusoidality (THD) of output voltage and current, as well as 

different power losses in the converter. This is due to the fact that 

higher voltage harmonics cause the presence of higher current 

harmonics, which causes additional power losses in the power lines 

and load. Among the described algorithms, the best indicators of 

sinusoidal output voltage are algorithms based on a single 

modulation [28, 29]. 

The main varieties of sinusoidal PWM are shown in Fig. 6. 

 

 
a 

 
b 

 
c 

 

Fig. 6. Variations of pulth-width modulation: 

а – level-shifted; b – phase-shifted; c – level-phase-shifted 

 

Spatial-vector PWM modulation algorithm is shown in Fig. 7. 

Space-vector modulation is used to control active three-phase 

converters. With vector-modulation, it is not instantaneous voltage 

values applied to the windings that are calculated, but the moments 

of connecting the windings to the power bridge in order to form a 

given voltage vector. 

The switch management algorithm of the autonomous inverter 

in the space-vector modulation mode is based on the formation of 
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the required position of the voltage vector in space at each time 

interval. 

 

 
 

Fig. 7. Space-vector PWM  

 

The amplitude modulation algorithm is shown in Fig. 8. 

The switching time of each level is determined during the 

intersection of sine amplitudes of 0.5; –0.5; 1.5; –1.5; 2.5; –2.5. 

The effect of amplitude sampling is the amplitude quantization 

of a sinusoidal signal into a stepped view. The output is calculated 

using the rounding method to the nearest value, which creates an 

output signal symmetric about zero [30, 31]. 

The number of quantization steps is determined by the physical 

number of possible stages when forming the output voltage in a 

multilevel inverter. Form optimization is achieved by determining 

the value of the Asin amplitude, in which the rms content of the 

higher harmonics will be minimal [32, 33]. 

The concept of obtaining the optimum form of gradual-discrete 

voltage is reduced to minimizing and symmetrizing the area of 

higher harmonics with respect to the fourth period of the output 

voltage form [34]. 

 

 
 

Fig. 8. The algorithm of amplitude modulation 

 

Comparison of the harmonic distortion coefficient for different 

modulation algorithms is shown in Table 1. 

 

 

Table 1 

Comparison of harmonic distortion coefficient for different modulation algorithms 

Сell type and modulation 

algorithms 

Output voltage 

CMLI, 

V 

Output voltage of 

one cell, 

V 

THD of the output 

voltage of one cell, 

% 

THD total output 

voltage, 

% 

THD output 

current, 

% 

2-level cell with sinusoidal 

PWM 

2571.44 2998.5 99.29 68.27 14.91 

2-level phase-shifted PWM 

cell 
2284.67 2392.47 51.74 40.05 4.54 

2-level cell with phase-

shifted PWM without 

interleaving 

2320.9 2395.27 51.74 44.06 5.77 

3-level cell with level-shifted 

PWM with interleaving 

2666.4 2390.03 52.82 32.22 3.91 

 

4. Results and discussion 

 

Of the presented algorithms, the best performance is the 

algorithm of amplitude modulation, which allows to obtain the form 

of output voltage of a multilevel inverter with any number of 

degrees, optimized by the content of higher harmonics, namely by 

the minimum of the coefficient of harmonic distortions. 

The proposed algorithm allows to obtain the lowest possible 

THD for any voltage level. The advantage of the proposed 

algorithm in comparison with similar optimization algorithms is the 

provision of smaller harmonic distortions and its relative simplicity. 

The presented algorithm is based on the amplitude modulation of a 

sinusoidal signal with 25 % remodulation relative to the highest 

discretion. 

 

5. Conclusion 

 

The paper presents an overview of energy parameters of 

cascade multilevel inverter with different modulation algorithms. 

The best power parameters has MVSI with level-shifted PWM in 

interleaving mode. The analysis of existing algorithms was 

performed and the choice of the optimal algorithm for use in the 

scheme of solar power plants was carried out. 
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