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Abstract— It is shown that through the use of merge operations 

of variables belonging to different disjunct can construct an 

algorithm for solving SAT-problem with time complexity  

О ))(log(
4)(log

2
2 n

nnm , where m is the number of clauses in the 

SAT-problem, and n is the number of variables in a Boolean 

function SAT-problem, ie . to construct an algorithm of 

subexponential solutions for SAT-task. 
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I.        INTRODUCTION 

. The SAT problem is a task of satisfiability of a Boolean 

formula [1]. The formula is considered satisfiable if it has a set 

of variables to satisfy it, i.e. a set of values for all variables 

which makes it true. In Russian it is known as the problems 

„выполнимость‟ (ВЫП). The problem finds practical 

application: in hard-and software verification of modern 

computers, in designing FPGA [2-6], in solving automated 

proving problems, linked with checking inconsistency of sets of 

disjunctions in propositional calculus. For example, complex 

rail infrastructure control processes including passenger traffic 

control, power supply of various objects, logic control of objects 

at stations and railway spans, and complex information transfer 

telecommunications subsystems between infrastructure objects 

require efficient solution to diagnose such objects, which is 

possible due to improvements in the mathematical apparatus 

used in fault detection systems part of which are methods to 

solve SAT problems. A SAT problem also finds wide application 

in cryptographic analysis [6], since encoding algorithms can be 

considered in terms of conjunctive normal form (CNF) and the 

problem of cryptographic analysis can be interpreted as the 

problem to find the solving set, in which the solving set is the 

secret key. A SAT problem is of importance in automated 

proving systems, in which a formula is a set of clauses 

considered as disjunction of some literals, namely, variables Х 

and Х . The problem is of great value for circuit-satisfiability 

problems (CIRCUIT-SAT). There are a lot of exponential 

algorithms of its solution and heuristic approaches of 

polynomial complexity. Among them one should mention the 

Monien and Shpikermayer algorithm (1985), in which for a 3-

SAT problem a simple search is used: alternate substitution of 

each variable with 1 or 0, with consequent recursive solution of 

a smaller problem, having temporal complexity О(1,84n). 

Generally, it is possible to select two basic types of algorithms 

to solve SAT problems: local search algorithms, beginning with 

a set of values (though, it doesn‟t satisfy the whole formula), 

and then it is modified with successive approach to the 

satisfiable set; and so-called the DPLL algorithms (after the 

inventors Davis, Putnam, Logemann, Loveland; their 

description of the basic operational principles for the method 

dates back to 1968), which evade a tree of possible sets and 

make a depth-first search. A local search, as a rule, is 

probabilistic, because one should start with a set, which is taken 

at random, and it can impact many things. It should be 

mentioned that the DPLL-like algorithms are more 

deterministic, mostly due to the theory developed by Oliver 

Kullmann and Horst Luckhardt, linking these estimations with 

recurrent equation solution. Their idea proved to be fruitful, 

which made it possible to design programmes automatically 

proving new higher complexity estimations for algorithms based 

on these principles. Thus, algorithms, based on local search, win 

in practice, and the DPLL-like algorithms win in theory, for 

them it is possible to prove far stronger higher estimations. 

Sizes of the problems, being solved now by industrial solvers, 

amount to hundreds and thousands of variables, demonstrating 

high efficiency, but their basic algorithm is exponential anyway. 

The SAT problem dimensions in using modern technologies of 

the FPGA design is rapidly growing, therefore it is important to 

develop effective algorithms to solve SAT problems, i.e. 

algorithms of low temporal complexity which always give 

possibility to say if a Boolean function is satisfiable; and if it is 

satisfiable, to indicate a set of variables for which it is 

satisfiable. All known deterministic algorithms for SAT problem 

solution have exponential complexity, therefore the aim of the 

article is to demonstrate that the given task can be solved in 

subexponential time (growth rates nn log  exceeding any 

polynomial, but less than 
n2 for any   >0, are called 

subexponential [7]).  

 

II. FORMALIZATION OF A SAT PROBLEM AND     

               ITS SOLUTION PROBLEM  

 

Consider Boolean function ),..,,( 21 nxxxf  in conjunctive 

form ),...(...)...(),..,,( 2111211

212121
mnmmn

nnn xxxxxxxxxf
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The ,  operations are Boolean and are modeling simple 
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logic statements: – «OR»; – «AND». For any binary set 

),..,,( 21 nxxxх  the function takes on one of two possible 

values: one or zero. The task of satisfiability lies in an answer to 

the question whether there exists a set of 

variables ),..,,( 21 nxxxõ  , which turns function f into one.  

As [8] shows, a SAT problem can be considered as a 

problem of coverage, to do this, take a Boolean function to chart 

Boolean matrix B, in which the columns correspond to variables 

 nXÕÕ ,...,, 21
 and  nXÕÕ ,...,, 21 , and the rows correspond 

to the disjunctions of the Boolean function. Generally, the 

number of columns in matrix B equals to 2n, and the number of 

rows equals to the number of disjunctions m in the Boolean 

function. 

For example, for Boolean function 

 
    ,

))

211331

321321

ÕÕÕXÕX

ÕXXÕXXF



  

renumber the disjunctions of the Boolean functio (Table 1). 

 

Numeration of disjunctions  Table 1 

 

Whereas, matrix B looks like  
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The columns corresponding to variables 
iX  and iX  in matrix 

B are called inverse. If matrix B covers rows with „one‟, 

belonging to non-inverse columns, it means that function f is 

satisfiable, if such coverage does not exist, it is unsatisfiable. 

Each variable 

iX  in matrix B, in general, with m rows, i.e. 

corresponding to a Boolean function with m disjunctions, will 

be characterized by vector H(i)(h1, h2,…, hm), where hi = i, if 

variable 

iX  covers the i-row in matrix B and hi =0, 

otherwise. In its turn, assign weighted estimator рi for each 

vector, which equals the number component hi different from 

zero. If we consider subset of two variables 

iX and


jX or 

more, thus such a set is characterized by joint vector H(i,j…) 

combining components of the same name according to the rule  

                                      

.000;0;0;    iiiiiii      (1) 

For example, a given Boolean function is 

)( 312 xxxf  )( 324 xxx  )( 432 xxx 

)( 412 xxx  )( 241 xxx  )( 321 xxx  )( 431 xxx 

)( 321 xxx  )( 321 xxx  )( 132 xxx  )( 423 xxx 

)( 431 xxx                                                                                                                 (2) 

 

Renumber disjunctions 

 

  1- )( 312 xxx  ;2- )( 324 xxx   

  3- )( 432 xxx  ;4- )( 412 xxx  ; 

  5- )( 241 xxx   6- )( 321 xxx  ; 

  7- )( 431 xxx  ;8- )( 321 xxx  ;  

 9- )( 321 xxx  ;10- )( 132 xxx  ; 

11- )( 423 xxx  ;12- )( 431 xxx  .  

 

 

Write down their vectors H(i) with weighted estimators, 

determined according to the given rules (Table 2). 

 

 

             Vectors H(i) with weighted estimators  

                                                     Table 2                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All pairs 
iX  and iX , all possible non-overlapping sets 

without inverse vertices based on the given pairs with their 

joint vectors and their weighted estimators, determined 

according to proportion (1) are given in Table 3, where vectors 

are presented in brackets, and weighted estimators of the 

vectors are in bold. 

 

1-  )321 ÕXX   
           2-  )321 ÕXX   

3-  31 ÕX   4-  13 ÕX   5-  ,21 ÕÕ   

        
1 

1x  
H 1(0,0,0,0,5,6,7,8,0,0,0,12) p1=4 

2 
2x  

H 2(1,0,3,4,0,6,0,0,0,10,0,0,0) p2 =5 

3 
3x  

H 3
 (0,0,3,0,5,6,7,0,0,1,0,0,0) p3 =5 

4 
4x  

H 4 (0,2,0,0,5,0,0,0,0,0,0,0,0) p4 =2 

5 

1x  
1H (0,0,0,4,0,0,0,0,9,10,0,0) 1

p  =3 

6 

2x  
2H (0,2,0,0,5,0,0,8,9,0,11,0) 2

p  =5 

7 

3x  
3H  (0,2,0,0,0,0,0,8,9,0,0,12) 3

p  =4 

8 

4x  
4H (0,0,3,4,0,0,7,0,0,0,11,12

) 
4

p  =5 
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                                                       Stages of procedure A  

 

                                                                Table 3 

 

                                                                    

                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 

All possible pairs 
iX  and iX  and their  

characteristics 

All possible associations of all non-inverse pairs 

iX  and iX  and their characteristics 

Number of subsets with 

an odd number of 

variables, which wasn‟t 

formed by procedure A 
                                           

21 xx (0,2,0,0,0,6,7,8,9,0,0,12)  7     
21 xx 43 xx (1,2,0,4,5,6,0,8,9,10,0,0)  8                         

21 xx 34 xx (0,2,3,4,5,6,7,8,0,0,0,0)  8 

43

4 C  

43

4 C  

                                            

31 xx (0,2,0,0,0,6,7,8,9,0,0,12)  6 
31 xx 42 xx (1,2,3,4,5,6,7,8,9,10,11,12)  12*       

31 xx 24 xx (1,2,0,0,5,6,7,8,9,0,11,12)  9 

43

4 C  

43

4 C  

                                                         

41 xx (0,0,3,4,0,6,7,8,0,0,11,12)  6 
41 xx  32 xx  (1,2, 3,4,5,6,7,8, 9,0,11,12 )  11          

41 xx 23 xx (0,2,3,4,5,6,7,8,9,10,11,12)  11 

43

4 C  

43

4 C  

                                           

12 xx (1,0,3,4,0,6,0,0,9,10,0,12)   7 

 12 xx 34 xx (1,2,3,4, 5,6,7,8, 9,0,11,12)  11          

12 xx 43 xx (1,2,3,4,5,6,7,0,9,10,11,12)   11 

43

4 C  

43

4 C  

                                           

32 xx (1,2,0,0,0,6,7,8,9,0,0,12)   7 
32 xx 41 xx  ( 1,2, 3,4,0,6,7,8,9,0, 11,12 )  10           

32 xx 14 xx (1,2,0,4,5,6,7,8,9,10,0,12 )  10     

43

4 C  

43

4 C  

                                           

42 xx (1,0,3,4,0,6,7,8,0,0,11,12)   7 
42 xx 13 xx   (1,0,3,4,5,6,7, 8,9,10,11,12 )  11       

42 xx 31 xx (1,2,3,4,0,6,7,8,9,0,11,12 ) 10 

43

4 C  

43

4 C  

                                            

13 xx (1,3,4,5,6,7,9,10,11)  9 

 13 xx  42 xx   (1, 2,3,4,5,6,7, 8,9,10,11,0) 11            

13 xx 24 xx (1,2,3,4,5,6,7,8,9,10,11,0) 11   

43

4 C  

43

4 C  

                                         

23 xx (0,2,3,0,5,6,7,8,9,10,11,0)  9 
23 xx 14 xx   (1,2,3,4,5,6,7,8,9,10,11,0)  11        

23 xx 41 xx (0,2,3,4,5,6,7,8,9,10,11,12)  11   

43

4 C  

43

4 C  

                                           

43 xx (0,0,3,4,5,6,7,0,0,10,11,12)  8 
43 xx 21 xx (0,2,3,4,5,6,7,8,9,10,11,12)11   

43 xx 12 xx (1,0,3,4,5,6,7,9,10,11,12) 11 

43

4 C  

43

4 C  

                                           

14 xx (1,2,0,4,5,0,0,0,9,10,0,0)  6 

 

 14 xx  32 xx  (1,2,0,4,5, 6,7,8,9,10,12) 11             

14 xx 23 xx (1,2,3,4,5,6,7,8,9,10,11,0)  11     

43

4 C  

43

4 C  

                                          

24 xx (0,2,0,0,5,0,0,8,9,0,11,0)  5 

 

24 xx 31 xx (0,2,0,0,5, 6,7,8,9,0,11,12 ) 8                     

24 xx 13 xx  ( 1,2,3,4,5,6,7,8,9,10,11,0) 11  

43

4 C  

43

4 C  

                                           

34 xx (1,2,0,0,5,0,0,8,9,0,0,12)  6 
34 xx 21 xx (1,2,0,0,5,6,7,8,9,0,0,12)  8 

12 xx (1,2,3,4,5,6,0,8,9,10,0,12) 10    

43

4 C  

43

4 C  

 

27=128 subsets were 

formed implicitly with 

an odd number of 

variables 
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From Table 3 we can see that there exists subset  

31 xx 42 xx (1,2,3,4,5,6,7,8,9,10,11,12) р=12=m forming the 

coverage, and it is the satisfiable set for a reference Boolean 

function, in Table 3 it is marked with asterisk. Therefore, if we 

have an arbitrary set of non-inverse variables {

iX }, for 

which weighted estimator рi,…,к = m of  joint vector H(i,,..,к ), 

then it means that the set has a subset providing satisfiability 

of the Boolean function, as it covers all rows with „one‟ in 

matrix B. Consider possibilities to form maximum sets of non-

inverse variables {

iX } for an arbitrary Boolean function 

with n variables. Divide the set of variables of the Boolean 

function into two types of maximum subsets of variables, 

without inverse vertices.  The first one corresponds to the sets, 

which can be classified as maximum, they are  

{ )...( 321 nxxxx ; )...( 321 nxxxx };{ )...( 321 nxxxx ;

)...( 312 nxxxx … )...( 121 nn xxxx }, (3)                  

{ );...( 321 nxxxx )...( 312 nxxxx ;….. )...( 121 nn xxxx }   

 there are only 2n+2 of them. The second type corresponds to 

all maximum subsets which can be formed on the base of 

unions by different methods of sets of variables 
iX  and iX , 

they can be presented as a two-partite graph, in which non-

inverse variables are connected along the ribs (Fig.1), and 

every pair is characterized by its vector and weighted 

estimator. For a function of four variables all such pairs are 

given in Column 1 of Table 3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider procedure A of forming maximum sets without 

inverse vertices. 

Procedure А 

 

Step 1. Form all set of variables of a Boolean function of the 

first type, their vectors H (i) (h1, h2, ..., hm) and determine 

their weighted estimators рi.. 

Step 2. Check whether there are sets with рi=m, if not, proceed 

to the next step, otherwise the procedure finishes the work, as 

the analyzed Boolean function is satisfiable. 

Step 3. Form all possible sets from pairs 
iX  and iX  with 

double number of variables without non-inverse vertices and 

check among the resulting sets whether there are sets of 

weighted estimators рi =m, if so, the Boolean function is 

satisfiable, and the procedure finishes, if not, proceed to the 

next step. 

Step 4. Of all current sets, unite only those non-intersecting by 

elements of subsets and those without inverse vertices and 

again receive subsets of double number of variables without 

inverse vertices. Check out of the resulting sets whether there 

are sets of weighted estimator рi =m, if so, the Boolean 

function is satisfiable, and the procedure finishes, if not, 

proceed to the next step. 

Step 5. Check the cardinality of generated sets, whether it has 

reached value n, if n is even, or (n-1,) if n is odd, if not, 

proceed to step 4, otherwise proceed to the next step. 

Step 6. Check out of the resulting sets whether there are sets of 

weighted estimator рi =m, if so, the Boolean function is 

satisfiable, if not, the Boolean function is not satisfiable. 

In fact, in procedure A the doubling of sets repeats 

until, on the base of resulting subsets, a subsequent union is 

not possible, due to inverse vertices or a further union does not 

change the resulting subsets. It is clear, that such a situation 

occurs at step k of procedure A and when the cardinality of 

generated subsets reaches (n), if n is even, or (n-1) if n is odd. 

A feature of the procedure is that maximal sets without an odd 

number of variables will always be as subsets within subsets 

with an even number of variables, but greater by one. The 

number of subsets that were formed implicitly by procedure A, 

for each union is given in Column 2 of Table 3. 

The number of subsets formed at the first step of the 

procedure is equal to n (n-1), at the second one is n (n-1) (n-2), 

etc. at the next steps will be summed, which is shown by ratio 

(4) 

 n(n-1)+ n(n-1) (n-2)+ n(n-1) (n-2) (n-4)+ n(n-1) (n-2) (n--4) 

(n-8)… +…,                                                                           (4) 

Rewrite (4) in the form 

n(n-1)[1+(n-21)+ (n-21) (n-22)+…+ (n-21) (n-22) (n-23)… …(n-

2k)] = n(n-1)b.                                                                        (5) 

The process of summing in (5) should stop at step k-th when 

reaches 2k = n, i.e. and k = log2 (n), where in the last 

summand the number of multipliers equals log2 (n). As 

follows from (5) the inequality is true 

  b<n
0
+n

1
+n

2
+n

3
+…+

n
n 2log

                        (6) 

Suppose in (6) all 
in =

n
n 2log

 one can write inequality (7) 

2x  3x  
1x  

1x  3x  
nx  2x  

nx

 ….  

…. 

Fig.1 Graph of pairs of non-inverse variables 
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n
0
+n

1
+n

2
+n

3
+..+

n
n 2log

< 1log

2
2)(log
n

nn ,              (7) 
it follows from (5) and (7) that the number of sets which has to 

be built in procedure A does not exceed 
3log

2
2)(log
n

nn , 

and the number of operations to form these sets does not 

exceed 4)(log

2
2)(log

n
nnm . Considering the formation 

of the first type sets, the total complexity of maximal sets 

formation without inverse vertices equals 

О(
4)(log

2
2)(log

n
nnm +mn(2n+2))О ))(log(

4)(log

2
2 n

nnm . 

Procedure A for example (2) can be seen in Table 3, where the 

first column contains all pairs of non-inverse variables, 

excluding ones corresponding to type 1. The process of set 

formation with four variables can be displayed as a graph (see 

Figure 2). 

 

                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In graph G (Fig. 2) pairs of non-inverse variables 
correspond to the vertices and if subsets of the vertex  

are connected by ribs if subsets do not overlap each other 
and without non-inverse variables. In general, orders of 
vertices in graph G (Fig. 2) are equal to n-2, and for the 
considered example 4-2=2. The results of unions are shown 
in the second column of Table 3. The third column of Table 
3 shows the number of variables unions by three, which 
were formed implicitly by the procedure, their total number 
being 27=128. As shown in Table 3 we have for example 
(2) performing a single set of variables of the 

second type (1,2,3,4,5,6,7,8,9,10,11,12) with weight p=12=m, 

and a subset of the first type with weight p=12=m. 

It should be noted that if graph G is built for an arbitrary 

Boolean function of n variables, the initial degree of vertices is 

n-2, in further unions, in 2, in 4, in 8, etc., the order of vertices 

in graphs, in which these subsets corresponding to the graph 

vertices, will decrease exponentially, the sets with an odd 

number of variables being listed automatically, and the 

procedure does not spent time on it, because they are part of 

those listed in procedure A. It is seen from proportion (5), 

which explains the fact that the number of maximal sets, 

consisting of non-inverse variables are subexponential and that 

procedure A lists these maximal sets of non-inverse variables 

in subexponential time. 

 

                   III.       Conclusion 

 Thus, for a SAT problem it has been proposed an 

algorithm of subexponential complexity, if 1 . Clearly, 

the complexity of procedure A is rather high, but if we take 

ratio
n

n

n 2log

2 , for example, where n = 100 and n 1000, we get 

respectively 1,31016 and 1,110271, i.e. time gain could be 

potentially significant. It should be noted that procedure A for 

unsatisfiable functions enumerates all maximal sets of non-

inverse variables and makes, at least, the number of steps 

defined by proportion (8), i.e. it can list in subexponential time 

all sets of variables at which the Boolean function is true.  

The above procedure А makes it possible to list all sets of 

variables for which the analyzed Boolean function is 

satisfiable in subexponential time, that is, to solve the problem 

of  ”full satisfiability “. 
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