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The currents for the interaction of the massive high-spin boson (J >1) with two spinless particles are derived.
These currents obey the theorem on currents and fields as well as the theorem on current asymptotics. In one-loop
approximation the contributions of high-spin boson to the self-energy operator for a spinless particle are calculated.
It is shown that in one loop approximation the high-spin boson contributions for any spin J and mass lead to finite

self-energy operators of spinless-particle.
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1. INTRODUCTION

The improvement of the accuracy for the calcula-
tions of the hadron reaction amplitudes at low and in-
termediate energies demands taking into consideration
of the high-spin particle contributions. Such investiga-
tions are performing more than forty years. In the
amplitude calculations the Feynman rules, the
propagators and the vertex functions related to the
interactions current are used for high-spin particles like
to these ones for the 0 and 1/2 -spin particles. We name
the approaches used for these calculations as the
common approaches. Unfortunately the common
approaches have the defects such as: 1) the
inconsistency of the equations; 2) the power
divergences or energy increasing; 3) the ambiguities in
the vertex functions; 4) the contradictions to the experi-
mental data.

1.1. INCONSISTENSY OF EQUATIONS

Assume that the interactions of the high-spin parti-
cles are described by the non-homogeneous Klein —
Gordon or Dirac equations. For the integer spin J =/
we have

(1+M2)U(x)ﬂl_,, =IOy O

where U (x)yl__. , @nd j(x)yl.__ y, are the symmetrical

field and current tensors, respectively, M is the parti-
cle mass. It is known that the field tensors for the high-
spin boson (HSB) obey the auxiliary conditions:

8llk U(x)/llwﬂl =0; (2)

U(x) 0, (€)

gﬂiﬂk Myl =
where i,k=12,..,1[.
current tensors obey the symmetric condition only.
Therefore the equation systems are inconsistent. To see
this we consider the Fourier components of the field and
the current tensors. Then the system of the partial dif-
ferential equations (1) for the Fourier components is the
system of the linear algebraic equations. This system is
inconsistent as the conditions like to (2), (3) are only for
left hand of (1).

In the common approaches the
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1.2. POWER DIVERGENCES

The substitutions of the propagators and the vertex
functions for the high-spin particles in the reaction am-
plitudes instead of the propagators and the vertex func-

tions of the 0— and %—spin particles lead to the power

divergences for the amplitudes corresponding to the
loop diagrams and the energy increasing for the ampli-
tudes corresponding to the tree diagrams. The common
approaches have two sources of the power divergences.

1.2.1. PROPAGATORS
As is known (for example in [1-3]) the propagator of
spin-1 particle include term p,p, /M 2, where p is

the particle momentum. For J =/ the propagator in-
clude term

Py Py " Py Py,
20(,.2 2
M (p -M )

“

Therefore the scale dimension of the particle propa-
gator is equal to 2/ -2 . The HSB momentum can be
the integration momentum for the loop-diagram ampli-
tudes and this give the power divergences. For the tree-
diagram amplitudes the HSB momentum is expressed
through the external particle moments and this leads to
the energy increasing at high energies.

1.2.2. CURRENTS
For the HSB interaction J(p)—> O(k; )+ O(k,) the

currents in the common approach can be written in three
forms:

kllul ...k][ul N or (5)
Tty = VK24 25 or (6)

We see that the current tensors (5)-(7) include the prod-
ucts of the particle moments additional to the spinless
particle current. These moments can be expressed
through the integration moments or the external particle
moments. This leads also to the power divergences or
the energy increasing.
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1.3. AMBIGUITIES

The using of the current tensors (5)-(7), including
ki, or ky, or (kg —ky), for J=1 gives different
expressions for the amplitudes and even the different
powers of the divergences. The question is: what cur-
rent is correct? We can say: all these currents are

wrong.

1.4. CONTRADICTIONS
TO EXPERREMENTAL DATA

In the common approaches the reaction amplitudes
rise with the energy and the spin value by the power
law. Moreover the quantity of the diverging loop-
diagram amplitudes increases and the powers of the
divergence in each such amplitude increase too. It con-
tradicts to the experimental data, as in the reality the
cross-sections decrease with the energy and the spin
value J at high energies.

The performed consideration shows that the com-
mon approaches must be modified. To eliminate the
defects of the common approaches we continue the in-
vestigations, which had been begun in [4,6].

2. PROPERTIES OF CURRENTS
IN CONSISTENT APPROACH

2.1. THEOREM ON CURRENTS AND FIELDS

For the consistency of the non-homogeneous partial
differential equations of Klein-Gordon the current and
the field tensors must have the same properties, i.e.
must be

& iy j(p)/h---ﬂz =0, @)
Py j(p)ﬂl---ﬂl =0 O

8 pipty j(x)/ll---/lz =0,

aﬂk j(x)#l---#l =0.

coordinate momentum
representation representation

It is easy to see that the conditions (8), (9) must exit
as the operator of the Klein —Gordon equation is the
scalar operator. Therefore in the left and right parts of
the non-homogeneous equations must be the representa-
tions of the same dimension. This gives the same prop-
erties of the field tensors and the current tensors.

In consequence of the current conservation the con-
tributions of the terms including p, /M in the propa-

gator numerator to the product of the propagator and the
currents disappear and the momentum dependences of
the propagator part retained are the same for any /.

To construct the current tensor which obey (8), (9)
we modify the projection operator [7]

(p,a,b)=ay, ..ay, H(p)m---#z,w--w by, ...by,

a2)e (5] )
M-a2)2(-562)2 _ pulap
R ) au=au== 5, (0
B’ :b _p#(bp) Z:—L

e pr Ja2 52

where P(z) is the Legendre polynomial. At

p=0, z=cos0, a = (0,?1), b= (O,l;). The projection
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operator H(p)/lyuﬂpvlmvz can be derived from

Hl(p,a,b) by the differentiations with respect to the
vectors a,, and by, . For example for J =1 we have

[5]

2
H(p)ﬂv:_g,uv"’_p,upv/p : (11)

One can be shown that the scale dimension of the
propagators for any spin J equals -2 in our approach,
whereas in the common approaches it equals 2J -2 .
Such a way, one source of the divergences disappears in
consequence of the theorem on currents and fields.

Consider the physical currents j(x) P (which

obey (8), (9) and have 2/+1 components) and the
common 77(x)l,1 » (which  have

({+1)({+2)({+3)/6 components). The physical cur-
rents may be derived as

currents

j(x)ﬂl---#z :ﬂln(x)/‘l"-.ulvvl"-vl 77(36)"1---"1 ’ (12)

Hy--ty and

the common fields go(x)vli_.vl. Then the Klein-Gordon

We consider similar the physical fields U(x)

equations may be written as

M) o, 06,

= H(x),ul....,u,,vl...v, n(x)vl...vl :

(13)

2.2. THEOREM ON CURRENT ASYMPTOTICS

For the existence of the physical currents j(x) —

their Fourier components must decrease at | pv| —>

such that the double integrals of the modulus for the
product of these current and the high-spin particle mo-
mentum with respect to these momentum components
must converge.

Indeed, the equations have the order 2/+2 and in-

clude the derivatives of the ﬂ(x)vl..v, up to order 2/ . In

[5] it is shown that 2/+1 equations will be for 2/+1
physical states if the common currents n(x)vl..v, (12)

have the derivatives up to order 2/+1. Then the physi-
cal currents must have the first derivatives (to obey (9)).

The HSB moves along some direction in the 3-
space. Let HSB moves along the z-axis, i.e.
p= (pO,O, 0, p3) . According to the Weierstrass test for

uniform convergence the existence of the derivatives for
the current in the coordinate representation are provided
by the convergence of the integrals for the Fourier com-
ponents of the physical currents

~+00 ~+00
Jdpo [aps|i(p),.  po): (14)
—o0 —o0
and for the common currents
Japo Japsfnp,.., pi" P2 (s)

—00 —00



where mg+mz =m; m=0,,..,2I+1. The integrals
(15) must converge for all these m and ms5 . Therefore

the currents (15) must include the functions (form-
factors) which provide the convergence of the integrals
(14) and (15).

3. CONSISTENT MODEL
FOR INTERACTION OF MASSIVE
HIGH-SPIN BOSON WITH TWO SPINLESS
PARTICLES

In our approach the physical currents for
J ( p) < O(kl )+ O(kz) - transition are given by

P:9) .y =& 2P D) i
X4y, --qy, " P >k(kl )(P*(kz )’

p =k +ky, g is the coupling

(16)

where g = k| —k,,

constant. Then the integral (15) written as

+00 +00 —
[dpo [ dps|f(p.a)pg" p3 (17)
—00 —00

must converge. The function f (p,q) is such that:

1) f (p,q) exists for any values of the moment p and
q; 2) we choose f(p,q)> 0, as the integrands in (15),
(17) include the modulus of the f(p,q); 3) f(p,q) is
the relativistic scalar and depends on the relativistic
invariants p® = pg - p3, (p.9)= podo — P3d3> 4

4) f (p,q) can be the rational fraction, as for such

function the integrals (14), (15), (17) for low m can
converge but for large m can diverge. The theorem on
current asymptotics allows the discontinuities in the
derivatives of the common currents for the order more
than2/+1.

It can be shown that the integrals (17) diverge for
the functions f(p,q)zf(pz,qz) and f((p,q),qz) at

some mg and m3. Now we consider function

F(pa)=(pal +atn "

-1
2 ) (18)
x[(Z(pq)z /q? —p2) " +b4”2} ,
where a and b are positive constants and ny,n, are
the positive integer number. This function gives the

convergent  integrals  (14), (15), (17) at

n 220+3, ny 2 é +2 for all the  vectors

q# (O,ql ,qz,O). These integrals diverge logarithmi-
cally at ¢ = (O,ql,qz,O). We can make the convergent
integrals (14), (15), (17) for all the vectors ¢ if we shall

consider the function (18) multiplied by ( p,q)m1 , where

my is the positive integer number. But at new function

f(p,q) the
p—2r, £°(1520)— 27, ¢ — KK will vanish.

The logarithmic divergence of the integrals (14),
(15), (17) for ¢ = (O,ql,qz,O) may be compared with

well-known decays

the quadratic divergence of similar integral for the su-

perrenormalized /1(/73 - theory.
Using the function (18) we shown that the physical
currents at | pv| — o behave as

(19)

. —41-16
‘J(p,q)yl._.yl ‘ <lp |

Therefore we expect that in our approach the con-
vergence for the HSB interactions will be better than in
the i(p3 -theory.

Note that in our approach the currents for the HSB
and two spinless particle interactions have no the ambi-
guities presented in Ch.1.3. Indeed the products of the
projection operator derived from the contracted projec-
tion operator H(p,a,b) (10) and momentum compo-

nents p, or p, vanish, as follow from (2).

Then we have

2H(p) Lol V1V lei = _2H(p),u1...,u1,v1...v1 kZVi

20
= H(p Myl Vv qvi . ( )

Therefore in our approach the physical currents for
three forms of the common currents (5)-(7) have the
same momentum dependence.

4. PRODUCTS OF CURRENTS
AND PROPAGATORS

In consequence of the conditions (2), (3) the physical

fields U (x) are the implicit functions of the discrete

Hi--1y
variable (the spin projectionJ, ). Besides the physical

fields U(x) we consider

Hy-- 1y Hy--ty
other physical fields U (x, J Z) and the currents j(x, J.),

and the currents j (x)

by analogy with the helicity formalism. The components

of the tensor U(p) .y €3N be expressed through the

U (p,JZ) fields (the helicity states) by means of the
Clebsh-Gordan coefficients.

The Lagrangian can be written in the terms of the
fields U(x,.J,) by the sum of the states with the defi-

nite J, :

/
L(x) = Z [aPU+ (x, Jz )5PU(x, Jz )
J.=1
-M2U(x,J. U(x,J)
FU(6 ) (62 )+ U (6,02 ), 02 )]
The Lagrangian can be expressed through the fields

U(x)/llnuul as

@n
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L(x): (aPU-P(x),ul.‘.,u )(apU(x)M..,ul)
M2 () U0 g AU () g 76 @)

Hyply 14y ity )
+U (x)

PTIARC)
i
(k) (k) |
+kzll:ﬂ’[u1m[ulaﬂk U(x),tll..,u] +ﬂ'{u1m[ulaﬂkU+(x)‘ul..,ul

[0
* Z P .oy 8 Hitt U(x)ul-.ﬂz

T
TPy 8 iV () 1
The Lagrange factors A(k) and p(i’k) are the ten-
Hy--ty My

sors. The tensor /1(/; )#z has the rank /—1 and has no
1

index 4, . The tensor p/(jlk) has the rank /-2 and has

Hy

no the indices gy ,u; . The Euler-Lagrange equations

for the Lagrangian (22) give the equations (1) and the
conditions (2), (3). Similarly using the Lagrangian (21)
we can derive the non-homogeneous Klein-Gordon
equations for the fields U (x, J Z). By analogy with the

spinless particle we can write the expansions of the
physical field operators through the creation and the
annihilation operators. Using these expansions and the
commutators for the creation and the annihilation opera-
tors (similar to ones for spinless fields) we can derive
the commutators and 7 -products of the free HSB op-
erators. In [4] it is shown that the products of the HSB
propagator numerators and the physical currents do not
include the HSB-momentum components.

Now we show that these products expressed through
the common currents. Using (12) and property

n? (p)=(- l)l T(p) we have

0 TP ) ) 1))
ety pz—M2+i5 Vi.v] p2 —M2+i5
(2P ) g
(p2)"n pz_HA{Z)+i8ﬂ 23)
=(p2 )@ —2L )
(p ) g pz—M2+i€77 ’

These products are similar to ones in the common
approaches. But in (23) the projection operator is di-
mensionless. For the currents (16) of the
J(p) > Olky)+0(ky)  (Olky) > J(p)+0lky)) -~
transitions the product (23) can be expressed through
the contracted projection operator (10):

0 _Tlp.aa) g
p2-M?2+ie

(24)
=21 2(p.q)p2 )

M(p.q',q)
pr-M2+tis

The S -matrix for the HSB interactions can be de-
rived similarly to the S -matrix for the 0-and-1/2-
particle interactions [1-3] (by means of the T -product
of the exponent for the interaction Lagrangian).
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5. TEST OF CONVERGENCE IN ONE-LOOP
APPROXIMATION

Consider the contribution of HSB to the self-energy
operator of the spinless particle in the one-loop ap-
proximation. In this approximation the interaction cur-

rents (16) include the vector g = q' =2k — p. Then the
product (24), as z =1 and P,(l) =1 in (12), is given by
@ 0p) 0.
T T S

p-—-M*" +ie

Wi

(21 -1)u

(25)

i

gz./"z(pﬂ)(pz)l[(pq)2 - quz]

Now we derive for the HSB contribution to the self-
energy operator using (25):

S ek )
[(pq)2 —_pzqz(fl .

[p2 -M? +is]~[(k—p)2 —u? +igJ

where u is the mass of the virtual spinless particle. To

(26)

>

simplify the calculations we use the dispersion relations
induced by the Lehman representation:

rey()-L [ mEUy

! 2
s=k> .(27)
(e T8

We calculate ImZ(t) in (26) by means of changes like

-1
to (pZ—M2+i8) —>—2ﬂi5(p2—M2). Using the
function f(p,q) (18) we derive the exact expression

for Re > (s):

IR U ) S
ReX(s)=-4, Q-1
(28)
0 2 2 2 2
v | [HM ~u J ML
) 2t t t-s
(M +42)

o (=2 P —m2 (o122 —MZ)T

_(t—uz)znl +a4”1}

2
[2 (t—ﬂz)z sz " + p4n;

-2

X

X

rrou2-—m2)

. /
The integral (28) converges as n; = 21 +3, ny 2 3 +2.

It can be shown that ReZ(s) decreases at least as
1/s ats —oo. Such a way, the convergence for HSB
contribution is better than in the /1(p3 -theory for
spinless particles, as is known that Z(s) diverges loga-

rithmically for the contribution of two spinless virtual
particles.



6. CONCLUSIONS

1. The physical currents of the HSB interactions
must be conserved (theorem on currents and fields).

2. The physical currents of HSB interactions must
include the functions, which provide the convergence of
the integrals for the module of these currents multiplied
by the HSB momentum with respect these momentum
components (theorem on current asymptotics).

3. The investigations of the HSB contribution (at
any spin J >1 and any mass M ) to the self-energy
operator for the spinless particle show that in our con-
sistent model this self-energy operator is finite and de-
creases with s at leastas 1/s.

4. We expect that the currents of HSB interactions,
which obey to the theorem on currents and fields as
well as the theorem on current asymptotics lead to better

convergence than the lq)3 -theory.
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YCTPAHEHUE CTENNEHHBIX PACXOZ[PIMOCT]EFI B HEITPOTUBOPEYHUBOM MOJIEJIN
B3AMMOJENCTBHUU BBICOKOCITMHOBOUN YACTHUIIbI C BECCIIMHOBBIMH

1O.B. Kynuw, E.B. Puioauyx

HOJ'[y‘IeHBI TOKH BSaHMOHeﬁCTBHﬂ MAaCCHUBHOI'O BHICOKOCIIHHOBOT'O 0030HA (J > 1) C IByMsA OCCCIIMHOBBIMU Yac-

THLIAMHU. DTH TOKU yJOBJICTBOPSIIOT TEOPEME O TOJISIX U TOKaxX, a TakXKe TeopeMe 00 acCHMIITOTHKE TOKOB. B oyHO-
HETJICBOM NPHOJIIDKEHNH ITOKAa3aHo, YTO BKJIAJblI BEICOKOCIIMHOBOIO 0O30HA IPH JTIOOBIX Macce U CIHHE JAl0T KO-
HEYHBIH orepaTop COOCTBEHHOW 3HEPrUU OECCIIMHOBOM YaCTHIIBI.

YCYHEHHS CTENNEHEBUX PO3EIKHOCTEM Y HECYIEPEYJINBIA MOJIEJII B3AEMOIINA
BHUCOKOCHIHOBOI YACTUHKHM 3 BE3CIITHOBUMM

1O.B. Kyniw, O.B. Pubauyk

Opep)kaHO CTPYMH B3a€EMOJIM MaCHBHIX BHCOKOCIIHOBHX 0O30HIB (J > 1) 3 I1BOMa O€3CIIHOBUMHA YaCTHHKAMHU.

i cTpymu 3a10BOTBHAIOTH TEOPEMI ITPO MO Ta CTPYMH, a TAKOX TEOpeMi PO aCHMITOTHKY CTpyMiB. B ogHOMET-
JIbOBOMY HaOJIM)KEHHI MMOKAa3aHo, 110 BHECKH BHCOKOCIIIHOBUX 0OO30HIB MPU MOBUILHHUX CITiHI J 1 Maci 1alTh CKiH-

YEeHUI orepaTop BIIacHOI eHeprii 0e3CIiHOBOT YaCTUHKH.
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