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It is shown that the values of the infinite integrals for the Green functions of the Klein – Gordon and Dirac equations depend on the 
method used for its calculations, i.e., these integrals diverge. The Green functions proposed to eliminate these divergences include in 

the denominators the polynomials of the N  degree instead of one factor 2 2m q−  or �m q−  for the Klein – Gordon equation or the 
Dirac equation, respectively. The corresponding generalizations of the Klein – Gordon and Dirac equations have 2N  and N  
degree, respectively. The solutions of these generalizations for the Klein – Gordon and Dirac equations may be presented by the sum 
of N  terms, each term corresponds to the contribution of one particle (one generation). All these particles have different masses but 
the same spin, parity, charge, isospin. Since the space – time is 4 – dimensional one, the convergence of the integrals for proposed 
Green functions is possible only if the generation number N  is not less than three for integer spin particles and not less than five for 
half – integer spin particles. It is shown that the proposed Green functions have no any singularities in the space – time. In particular, 
the interaction potentials must have the oscillator form at short distance. It is predicted that two (or greater) massive particles with 
quantum numbers of the photon and gluons must exist. Besides, five (or greater) fermions with quantum numbers of the electron, the 
neutrino, the u − quark, and d − quark must exist (e.g., 1 2 3 4 5, , , , ,...,e e e e e eμ τ= = =  and 

1 2 3 4 5, , , , ,....u u u c u t u u= = = ). The massless neutrino must be one. If higher neutrinos are enough heavy then the decay 

4,5 1,2eν μν→  may be possible. 
KEY WORDS: convergence, multiple integrals, Green functions, partial differential equations, oscillatory potentials, particle 
generations, massive photon, massive gluons, massive neutrino. 
 
РАСХОДИМОСТИ ИНТЕГРАЛОВ ДЛЯ ФУНКЦИЙ ГРИНА УРАВНЕНИЙ КЛЕЙНА – ГОРДОНА И ДИРАКА И 

НЕОБХОДИМОСТЬ СУЩЕСТВОВАНИЯ ПОКОЛЕНИЙ ЧАСТИЦ 
Ю.В. Кулиш, Е.В. Рыбачук 

Украинская государственная академия железнодорожного транспорта 
Украина, г. Харьков, пл. Фейербаха ,7 

Показано, что значения несобственных интегралов для функций Грина уравнений Клейна – Гордона и Дирака зависят от 
метода вычисления, т.е. эти интегралы расходятся. Функции Грина предложенные для устранения расходимостей содержат 

в знаменателях полиномы степени N  вместо одного множителя 2 2m q−  или �m q−  для уравнений Клейна – Гордона и 
Дирака, соответственно. Соответствующие обобщения уравнений Клейна – Гордона и Дирака имеют порядки 2N  и N , 
соответственно. Решения этих обобщений уравнений Клейна – Гордона и Дирака можно представить в виде суммы N  
слагаемых, каждый из которых соответствует вкладу одной частицы (одного поколения). Все эти частицы имеют одни и те 
же значения спина , четности, заряда изоспина, но разные массы. Так как пространство-время имеет четыре измерения, то 
сходимость интегралов для предложенных функций Грина возможна только если количество поколений N  не меньше трех 
для частиц с целым спином и не менее пяти для частиц с полуцелым спином. Показано, что предложенные функции Грина 
не имеют сингулярностей во всем пространстве – времени. В частности, потенциалы взаимодействий должны иметь 
осцилляторный вид на малых расстояниях. Предсказывается, что должны существовать две (или больше) массивных частиц 
с квантовыми числами фотона и глюона. Кроме того, должны существовать пять (или больше) фермионов с квантовыми 
числами электрона, нейтрино, u  - кварков и d  - кварков например, 1 2 3 4 5, , , , ,e e e e e eμ τ= = = …  и 

1 2 3 4, 5, , , ,u u u c u t u u= = = … ). Безмассовое нейтрино может быть только одно. Если высшие нейтрино имеют 

достаточно большие массы, то возможен распад 4,5 1,2eν μν→ . 
КЛЮЧЕВЫЕ СЛОВА: сходимость, кратные интегралы, функции Грина, дифференциальные уравнения в частных 
производных, осциллятоорные потенциалы, массивный фотон, массивный глюон, массивное нейтрино. 
 

РОЗБІЖНОСТІ ІНТЕГРАЛІВ ДЛЯ ФУНКЦІЙ ГРІНА РІВНЯНЬ КЛЕЙНА - ГОРДОНА ТА ДІРАКА І 
НЕОБХІДНІСТЬ ІСНУВАННЯ ПОКОЛІНЬ ЧАСТИНОК 

Ю.В. Куліш, О.В. Рибачук 
Українська державна академія залізничного транспорту 

Україна, м. Харків, пл. Фейєрбаха, 7 
Показано, що значення невласних інтегралів для функцій Гріна рівнянь Клейна - Гордона та Дірака залежать від методу 
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обчислення, тобто ці інтеграли розбігаються. Функції Гріна запропоновані для усунення розбіжностей містять у 

знаменниках поліноми ступеня N  замість одного множника 2 2m q−  або �m q−  для рівнянь Клейна - Гордона та Дірака, 
відповідно. Відповідні узагальнення рівнянь Клейна – Гордона і Дірака мають порядки 2N  та N , відповідно. Розв’язки 
цих узагальнень рівнянь Клейна - Гордона і Дірака можна представити у вигляді суми N  доданків, кожен з яких відповідає 
внеску однієї частинки (одного покоління). Всі ці частинки мають одні й ті ж значення спіну , парності, заряду, ізоспіну, але 
різні маси. Оскільки простір-час має чотири виміри, то збіжність інтегралів для запропонованих функцій Гріна можлива 
тільки якщо кількість поколінь N  не менша трьох для частинок із цілим спіном та не менше п'яти для частинок із пів-цілим 
спіном. Показано, що запропоновані функції Гріна не мають сингулярностей у всьому просторі - часу. Зокрема, потенціали 
взаємодій повинні мати осцилляторний вигляд на малих відстанях. Передбачено, що дві (або більше) масивних частинок з 
квантовими числами фотона і глюона повинні існувати. Окрім цього п’ять (або більше) ферміонів з квантовими числами 
електрона, нейтрино, u  - кварків та d  - кварків повинні існувати (наприклад, 1 2 3 4 5, , , , ,e e e e e eμ τ= = = …  та 

1 2 3 4, 5, , , ,u u u c u t u u= = = … ). Безмасове нейтрино може бути тільки одне. Якщо вищі нейтрино мають досить великі 

маси, то можливий розпад 4,5 1,2eν μν→ . 
КЛЮЧОВІ СЛОВА: збіжність, кратні інтеграли, функції Гріна, диференціальні рівняння в частинних похідних, 
осциляторні потенціали, масивний фотон, масивний глюон, масивне нейтрино. 

 
In the quark model it has been shown that the hadrons consist of the quarks of six flavors. Therefore, now only the 

leptons, the quarks, the photon, the gluons, W ± , and 0Z  are considered as elementary particles. The study of the axial 
Adler – Bell – Jackiw anomaly shown that the contribution of one 1 2  - spin particle (a quark or a lepton) gives a linear 
divergence [1]. But taking into account of some sets of leptons and quark, such as , , ,ee u dν  or , , ,c sμμ ν  or 

, , ,t bττ ν , allows to eliminate this divergency. Thus, the convergence of the axial anomaly gives the relation between 
the quarks and the leptons. 

In connection with this the question arises: why do the generations of particles exist? We can remember the words 
of L.B. Okun that we good understand the reasons for the existence of some new particles. But we do not understand: 
why do old particles (for example, the muon) exist. Now the generations of the fermions are known only. Therefore, the 
question is arisen: do the generations of bosons exist or not? In Ref. [2] the results of the investigations for the decays of 
heavy neutral particle into Xμ μ+ −  are presented. These results may be considered as the manifestation of now neutral 
boson 0 /Z , which participates in the weak interactions. The existence of such weak-interacting boson may be great of 
importance, as then it is clear that the Standard Model is not complete. In relation with this it is of interest to investigate 
the theoretical reasons for the existence of the fermion and boson generations. 

At present paper the bases of the elementary particles theory are studied to answer on the question related to the 
existence of the particle generations. We show that the particle generations must exist. 

 
PARADOX OF THE GREEN FUNCTIONS 

Let us consider the particle propagators, i.e., the Green functions. It is well known that in the static case the 
exchange by the massless particle gives the Coulomb (Newton) potential 

( ) 1,0
4

V r
rπ

= ,           (1) 

where r  is the distance between the point charge and the point of observation. 
The exchange by the particle of the mass m  gives the Yukawa potential 

( ) 1,
4

mreV r m
rπ

−

= .          (2) 

These potentials are the Green functions 

( ) ( )
( )

3
3 2 2

1, ,
2

iqxeV r m G x m d q
q mπ

= =
+

∫
GG

G
G ,     (3) 

where r x=
G . Note that we can put 0m =  in Eqs. (2), (3) for the Coulomb potential. In the relativistic case the 

exchange by the boson of the mass m  can be expessed by means of the Green function for the Clein-Gordon-Fock 
equation 

( )
( )

4

4 2 2

1,
2

iqxe d qD x m
q mπ

−

=
− +∫  .       (4) 

For the 1 2  - spin particle the Green function of the Dirac equation has a form 

( )
( )

�( ) 4

4 2 2

1,
2

iqxq m e d q
S x m

q mπ

−+
=

− +∫ .       (5) 
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Usually the expressions (1) and (2) are derived from Eq. (3) by the calculations of the integrals in the spherical frame. 
Note that the integral in Eq. (3) is the infinite threefold integral. As it is known, the improper (in particular infinite) 
integral converges in that case only if the calculations of it give the same finite result by any possible methods. The 
convergences of improper onefold and multiple integrals have some distinctions. Thus, for multiple improper integral 
the conditional convergence does not exist. In Refs.[3, 4] it is proved that if the twofold improper integral converges 
then it converges also absolutely (i.e., the improper twofold integral with the module of the integrand converges). This 
is valid for any multiple improper integral too [4]. Thus, for the multiple improper integrals the convergence and the 
absolute convergence are equivalent [4]. Therefore, multiple improper integral converges then and only then when this 
integral converges absolutely. Thus, the integral in Eq. (3) converges only in the case of the convergence of the integral 

( )

3

3 2 2

1
2

d q

q mπ +
∫ G .         (6) 

But this integral diverges. Therefore, the integral in Eq. (3) diverges. To see this immediately we integrate Eq. (3) in the 

cylindrical frame. We choose ( )0,0,x r=
G

. Then 3qx q r=
GG  and 23

3
1
2

d q d q d dqϕ⊥=
G . We integrate in the next order: 

with respect to the angle ϕ , q⊥
G , 3q , respectively. Thus, we derive 

( )

( ) ( )

( )

3

3
2

3

2

32 2 2 2
0 3

2 2 2 2 2
3 3 32

3 32

1,
8

1 lim ln ln
8

1 1 1lim ln lim ln sin .
2 42

iq r

iq r

q

mr

qq

dq
G x m e dq

q q m

e dq q q m q m

er q q q r
rr

π

π

δ
π ππ

⊥

⊥

+∞ ∞
⊥⊥

−∞ ⊥

+∞

⊥
→∞

−∞

−

⊥ →∞→∞

= =
+ +

⎡ ⎤= + + − + =⎢ ⎥⎣ ⎦

= − + ⋅

∫ ∫

∫ G

JJJG

GG
G

G

G

    (7) 

We see that this integral diverges since the first term is indefinite and the limit in the second term does not exist, but 
these diverging terms do not depend on the particle mass. Note that the infinite three-fold integrals ,m s  (3), (7) 
converges only in the case if calculations of it by all possible methods give the same finite value. In particular, the limits 
in Eq. (7) must have the same value when 1 2 3, ,q q q→ ±∞ → ±∞ → ±∞ , ( )q⊥ → ∞

G
. 

For the Green function of the Klein – Gordon equation we calculate the integral (4) with respect to the spatial 
variables by integration in the cylindric frame similarly to the integral (7). Then we derive 

( ) 0 0 3 3

0 0 3 3
2

2

0 33 2 2 2 2
0 3 0

2 2 2 2 2 2 2
0 3 3 0 3 03

1,
16

1 lim ln ln .
16

iq x iq x

iq x iq x

q

dq
D x m dq e dq e

q q q m

dq e dq e q q q m q q m

π

π ⊥

∞ ∞ ∞
− ⊥

−∞ −∞ ⊥

∞ ∞
−

⊥
→∞−∞ −∞

= =
+ − +

⎡ ⎤
= + − + − − +⎢ ⎥

⎣ ⎦

∫ ∫ ∫

∫ ∫ G

G

G

G
  (8) 

In last improper integral the indefinites related to the transitions 3 0, ,q q q⊥ → ∞ → ±∞ → ±∞
G

 arise as addition to the 

indefinites in Eq. (7). They are the additional of sources of the divergence for the Green function of the Klein – Gordon 
equation. 

From the comparison of the integrands in Eq. (4) and Eq. (5) we see that the integrand in Eq. (5) includes the 
additional factor �q  which is related to the integration variables. Therefore, the improper integral (5) for the Green 
function of the Dirac equation diverges also. 

Thus, we derive the paradox (paradox of the Green functions):  
From the mathematical point of view the use of the Green functions (1)-(5) is incorrect, but these Green functions 
(calculated by some fashion) give adequate description of different experimental data. 

We may assume that the solution of the Green function paradox is possible by two ways: 1) We can conclude that 
existing theory is wrong and we must find new theoretical approach based on new mathematical methods; 2) We can try 
to modify existing theory. 

 
GENERALIZATIONS OF KLEIN – GORDON AND DIRAC EQUATIONS 

We consider second way by means of proper modification of the Green functions and corresponding 
generalization of the Klein-Gordon and Dirac equations. We propose: 
1) The generalizations of the Klein-Gordon and Dirac equations must have some simple form; 
2) The existing expressions (such as Eqs. (1), (2)) can be derived from new generalized Green functions in some 
limit. 

We propose that the generalized non-homogeneous Klein-Gordon equation has 2N  degree, and may be written as  
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( )( ) ( ) ( ) ( )2 2 2
1 2 ........ Nm m m x xϕ η+ + + =, , , ,      (9) 

where ( )xϕ  is the field and ( )xη  is the current (the field source). The Green function for Eq. (9) is given by  

( )
( ) ( )( ) ( ) ( ) ( )

4 4

4 42 2 2 2 2 2 2
1 2

1 1
....2 2

iqx iqx

N N

e d q e d qG x
q m q m q m P qπ π

− −

= =
− + − + − +∫ ∫ ,    (10) 

where ( )2
NP q  is the polynomial of the degree N  with respect to 2q . We consider the case of the polynomial with real 

non-negative different zeros 1 2 3 .... Nm m m m< < < < . Note that for the advanced, retarded and causal Green functions 
we must write the corresponding imaginary infinitesimal term to each 0q  or 2

km , respectively. 
The general classical solution ( )cl xϕ  of the linear equation (9) is the sum of the general solution of the 

corresponding homogeneous equation ( ) free
xϕ  and partial solution ( )nh

xϕ  of non-homogeneous equation: 

( ) ( )4 2 2

1

N
iqx iqx

k k kfree
k

x d q q m c e c eϕ δ −

=

⎡ ⎤= − +⎣ ⎦∑∫ � ,      (11) 

( ) ( ) ( )4 4
nh

x d yG x y y d yϕ η= −∫ ,         (12) 

where kc  and kc�  are the arbitrary constants. Thus, ( ) free
xϕ  is the sum of the terms corresponding to particles with the 

same charges, parity, but with different masses. Each term in Eq. (11) corresponding to the index k  is the solution of 
the homogeneous Klein – Gordon equation: ( )( )2 iqx iqx

k k km c e c e− −+ + �, ( )2 2 0kq mδ − = . We exclude the case of equal 

masses in Eqs. (9) and (10). We can show that the functions ( ) free
xϕ  are non- normalizable if at least two masses are 

equal. Consider the equation similar to Eq. (9) in the case of n  equal mass m  (i.e., m  is n  - fold root): 

( ) ( ) ( ) ( ) ( )2
2

n

N nm m m x xϕ η−+ + + =, , … , .      (13) 

The part of the classical solution ( ) free
xϕ  corresponding to the equal masses may be written in general form similarly to 

Eq. (11): 
( ) ( )

( ) ( )( ) ( )( ) ( ){
i i ( ) i ( )( ) i ( )( ) ( ) }

4 2 2
,

1 2 1 3 21 22 1,1 1,2 1, 1

1 2 31 21 22 1,1 1,2 1, 1

.....

.... ,

n free

iqx
n n n n n

iqx
n n n n n

x d q q m

C C xa C xa xa C xa xa xa e

C C xb C xb xb C xb xb xb e

ϕ δ

− − − −

−
− − − −

= − ⋅

⎡ ⎤+ + + + +⎣ ⎦

⎡ ⎤+ + + + +⎣ ⎦

∫
…

…

 (14) 

where i i i1 21 2, , , , , , , nnC C C C C C… …  are arbitrary constants, and 1 1 21 22 21 22 1,1 1,2, , , , , ,..., , ,n na b a a b b a a− −  

1, 1 1,1 1,2 1, 1, , ,n n n n n na b b b− − − − − −  are arbitrary 4 - vectors, which do not depend on the components of the 4 - vector x . As it is 

known, ( ) 2
xϕ  is the probability density and 

( ) 2 3 1
V

x d xϕ =∫∫∫ ,           (15) 

i.e., one particle is in the volume V . For each term in the solution (11) it is easy to derive  

( ) 2 31 exp 1
V

iqx d x
V

± =∫∫∫ .         (16) 

But for one term in Eq. (14) we have (at equal vectors 1 2, ,...,k k kka a a ): 

( ) ( )
2

3exp , 1, 2, , 1.k

V

xa iqx d x k n± = −∫∫∫ …       (17) 

These integrals depend on the time 0x  and we cannot find some constant to derive 1 for such integrals. Moreover, 

( ) ( )
2

3lim expk

V
V

xa iqx d x
→∞

± = ∞∫∫∫         (18) 

The non-normalizable solutions of Eq. (13) can be eliminated in the case of non-zero constants 1C l and i1C  only in the 
solution (14). But in this case we derive the solutions of Eq. (13) at 1n = . Then we may introduce new current 
i ( ) ( ) ( )12 n

x m xη η
−

= +, . Thus for the normalizable solutions the Eq. (13) is reduced to the Eq. (9). Therefore, for the 
solution in case of equal masses the relation (15) cannot be valid. Thus, the masses in the generalized Klein Gordon 
equation must be different. We can write 
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( ) ( )( ) ( )

( ) ( ) ( )
2 2

2 22 2 2 2 2 2 2
11 2

2 2
1

2 2

1 1 ,
...

1 lim , 1 .
k

N
k

k kN N

kk
k k k

q m
N k N

A
q mP q q m q m q m

q m
A A A

P m P q

=

+

→

= =
− +− + − + − +

− +
= − = = −

′

∑
    (19) 

For the coefficients kA  the following relations are valid: 

2

1
0, 0,1,2,..., 2,

N
l

k k
k

A m l N
=

= = −∑       (20) 

2 2

1
1

N
N

k k
k

A m −

=

=∑ .          (21) 

To prove the relations (20), (21) we introduce 21/z q=  and use the expantion of the fractions in the geometrical 
series. Then we can expand Eq. (19) in the power series 

( )( ) ( )2 2 2
11 2

,
1 1 1

N
n

n
nN

z a z
m z m z m z

∞

=

=
− − −

∑"
      (22) 

and   
1 2 2

1
( 1)

N
N n

n k k
k

a A m+ −

=

= − ∑ .        (23) 

We see that the series in the left side of Eq. (22) begin from n N= , but in the right side begin from 1n = . Therefore, 
the coefficients 0na =  for 1, 2, , 1n N= −… . It gives the relations (20). In addition we have 1Na = , i.e., the relation 
(21) is valid. Using the equality (19) we can express the Green function (10) of Eq. (8) in terms of the Green 
functions (4) 

( ) ( )
1

,
N

k k
k

G x A G x m
=

= ∑ .        (24) 

As the dimension of the time-space is equal to four the integral (10) can be convergent at 3N ≥ . Consequently for each 
spinless particle two (or greater) particles with the same charges, isospin, C  - and P  parity, but different masses, must 
exist in addition. We may say that such particles are members of some set (a family or a kind or a dynasty). The 
members of different kinds belong to the generation. In Eqs. (11), (19) k  is the number of the particle generation. We 
may assume that the numbers of the members for the elementary particle kinds are less than the member number for the 
composite particle kinds. Each particle belongs to some kind and some generation. 

For the 1
2

 - spin particles we propose the next genertization of the non-homogeneous Dirac equation 

�( ) �( ) �( ) ( ) ( )1 2 ..... Ni m i m i m x xα αψ χ− ∂ + − ∂ + − ∂ + = ,      (25) 

where α  is the bispinor index. 
The classical solution of the homogeneous equation (25) is given by analogy with Eq. (11) 

( ) ( ) ( ) i ( )4 2 2
,, , ,

1
,

N
iqx iqx

k sk k s k s k sfree
s k

x d p q m C u q e C v q eψ δ −

=

⎡ ⎤= − +⎣ ⎦∑∑∫    (26) 

where s  corresponds to the spin projection, ( ),k su q  and ( ),k sv q  are the spinors, ,k sC  and i ,k sC  are arbitrary constants. 
The Green function for this equation may be written as  

( )
( )

�( ) �( ) �( )( )
( )( ) ( )

1 2 4
4 2 2 2 2 2 2

1 2

....1
...2

N

N

q m q m q m
S x d q

q m q m q mπ

+ + +
=

− + − + − +∫ .    (27) 

For the integrand in Eq. (27) we may write 

�( )
�( )

( )
�( )

( )
�( )

( ) �( ) �( ) �( ) �( )
�

( ) �

�
�( ) ( )

1 2

2 2 2 2 2 2
1 2 1 2

1
2 2 /

1

1 1

1, lim , 1 .
k

N

N
N N N

N
kk k

k k k k
q mk k N k N

q m q m q m
R q

q m q m q m q m q m q m Q q

q m q m
B B B B

q m Q m Q q
+

→=

+ + +
= ⋅ = = =

− + − + − + − + − + − +

+ − +
= = − = = −

− +∑

"
"

  (28) 

For the kB  coefficients the relations similar to Eqs. (20), (21) are valid: 
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1
0,

N
l

k k
k

B m
=

=∑  for 0,1, 2, , 2l N= −… ,       (29) 

1

1
1.

N
N

k k
k

B m −

=

=∑             (30) 

For the Green function (27) we may write 

( ) ( ) �( ) ( )
1 1

, ,
N N

k k k k k
k k

S x B S x m B i m D x m
= =

= = ∂ +∑ ∑ .     (31) 

 The integral (27) can be convergent at 5N ≥  only. Thus, for each spin - 1
2

 particle four (or greater) particles with 

different masses but with the same charges, spin, P  - parity must exist in addition. 
 

ABSENCE OF SINGULARITIES IN GREEN FUNCTIONS OF GENERALIZED KLEIN – GORDON AND 
DIRAC EQUATIONS 

Since the generalized Klein-Gordon equation (9) and generalized Dirac equation (19) have degree greater than 
four their Green functions and their first partial derivatives can be continuous function of the time and spatial variables, 
i.e., these Green functions cannot have any singularities (more precisely these Green functions can have the removable 
discontinuity). Note that the Green functions of the Klein-Gordon equation have singularities on the light cone, such as 
( ) ( )2 2 2 2, 1/ , , lnx x x xδ Θ  [5, 6]. The singularities disappear in causal ( )c

D x , advanced ( )adv
D x , and retarted 

( )ret
D x  by similar fashion. For example, using the expression for the causal Green function of the Klein – Gordon 
equation [5] near light cone and Eq. (24) we derive 

( ) ( ) ( )

( )

2
2 2

2 2
1

2
2 2

2 2
1

1 1 1
4 164

ln ln / 2 ln .
8 8

N
c k

k
k

N
k

k k k k
k

m
G x A x x

i x

m ii m x A m m

δ
π ππ

π π

=

=

⎡
= + − Θ +⎢

⎣
⎤⎡ ⎤+ + =⎥⎢ ⎥⎣ ⎦⎦

∑

∑
      (32) 

The singular terms including ( )2xδ , 2

1
x

 (and ( )2 2, lnx xΘ ) disappear in ( )cG x  as consequence of the relation (20) 

at 0l =  (and 1l = ). The continuous casual Green function may be written as 

( )
( )

2 2
2

1

2

1

ln , 0,
8

, , 0.

N

k k k
c k
cont N

k c k
k

i A m m x
G x

A G x m x

π =

=

⎧
=⎪⎪= ⎨

⎪ ≠
⎪⎩

∑

∑
      (33) 

Similarly, the elimination of singularities in the Green function of generalized Dirac equation can be derived. In 
particular, for continuous causal Green function we have in accordance with Eqs. (31) and (32): 

( )
( )

3 2

1

2

1

ln , 0

, , 0

N

k k k
c k
cont N

c
k k

k

B m m x
S x

B S x m x

=

=

⎧
=⎪⎪= ⎨

⎪ ≠
⎪⎩

∑

∑
     (34) 

The elimination of the singularities for the Green function can be shown in the static case too. Similarly to Eqs. 
(9), (10), (24) we have the generalization of the Yukawa potential 

( ) ( )
1 1

1,
4

km rN N

k k k
k k

eG x A G x m A
rπ

−

= =

= =∑ ∑
G G

.       (35) 

Each term of the sum in Eq. (35) has singularity at  0r x= =
G

 (i.e., on the light cone 2 20 0x r= − = ). Using the 

expansion 
2 2 3 3

1 ...
2 6

km r k k
k

m r m r
e m r− = − + − +  at small r  and relations (20) for 0l =  and 1 we derive 

( )
3 2

1

1
4 6

N
k

k k
k

m r
G x A m

π =

⎛ ⎞
≈ − +⎜ ⎟

⎝ ⎠
∑

G
.        (36) 

Note that the change of the sigh in kA  corresponds to mutual change of the attraction and the repulsion in the 

interaction potential (35) with the number k . The continuous ( )G x
G

 is given by 
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( ) 1

1

1 , 0,
4

1 , 0.
4

k

N

k k
k

m rNcont

k
k

A m r
G x

eA r
r

π

π

=

−

=

⎧
− =⎪⎪= ⎨
⎪ ≠⎪⎩

∑

∑

G
     (37) 

The function ( )G x
G

 has no any singularities, as contrast with the Goulomb and Yukawa potentials. From Eq. (36) we 

see that the potential must have the oscillatory form at short distances. Note that, the oscillatory potentials are widely 
used in the nuclear physics and in the quark models [7, 8]. But in these cases the parameters of the oscillatory potentials 
are determinated from the experimental data. The interaction force at small r  

( ) ( ) 3

112

N

k k
k

xF x gradG x A m
π =

= − = ∑
GJG G G

       (38) 

has no any singularities too. It is interesting to note that ( )0 0F =
G

. Thus, we see that the exchange by all the particles 
from boson kind leads to the relaxation of the interaction at short distances. This is similar to the asymptotic freedom. 

Note that if to use for ( ), kV r m  the result (7) derived in the cylindrical frame instead of Eq. (2) then the 
contributions of the diverging terms vanish, as consequence of the relation (20) at 0l = . Thus we derive Eqs. (35), (36) 
using for ( ), kV r m  Eq. (2) and Eq. (7). This confirms the convergence of ( )G x

G
. 

 
LOW – ENERGY LIMITS 

Consider the question about the reproduction of the results derived early (such as Eqs. (1) and (2)) in our 
approach. It is easy to see from Eq. (35) that at relatively large r  in the sum the term including 1m  is important only, 
i.e., at relatively large r  ( )G xG  approximately is equal to the Yukaua potential. Simultaneously large r  corresponds to 
small components of  the q  - momentum. Assume that 1 / 1km m �  for 2,3,...,k N= . Then we can rewrite 
approximately the equations (9) and (25) in forms 

( ) ( ) ( )
�( ) ( ) ( )

2 2 2
1 2

1 2

... ,

... .

N

N

m m m x x

i m m m x x

ϕ η

ψ χ

+ =

− ∂ + =

,
       (39) 

These equations practically coincide with the non-homogeneous Klein-Gordon and Dirac equations for the particles 
with the mass 1m . 

We can reduce at large distances (i.e., in low energy approximation) the equations (9) and (25) to the non-
homogeneous Klein –Gordon and Dirac equations, respectively, by means of the redefinitions of the interaction 
currents. We have seen from Eq. (7) that the calculations of the Coulomb and Yukawa potentials (1), (2) by means of 
the integral (3) are incorrect. But we derived these potentials as large-distance limit of the Green function for the 
generalization of the Klein – Gordon equation in the static case (35). In consequence of this and approximate validity of 
the Klein –Gordon equation at low energies (at large distances), we may assume that the use of the Coulomb and 
Yukawa potentials in the low energy physics is admissible. In particular, the results derived in the solid state physics, 
the plasma physics, the statistical physics, the atomic physics, and low energy nuclear physics are valid. 

 
EQUATIONS FOR KINDS OF BOSOS WITH HIGHER SPIN 

The interactions of the higher-spin particles usually described by the systems of non-homogeneous Klein-Gordon 
and Dirac equations. We consider the higher spin particles with integer spin ( )1J l J= ≥  in the Rarita-Schwinger 

formalism. The fields corresponding to these particles are described by the tensors ( )
1... l

U x
μ μ

 and ( )
1... l

U q
μ μ

 (in the 

coordinate and the momentum representations, respectively). These tensors are symmetric, traceless and 

( ) ( )
1 1... ...

0, 0
i il l
U x q U qμ μμ μ μ μ

∂ = = ,     (40) 

where 1, 2,...,i l= . 
The generalization of the Klein-Gordon equation system for the kind of the particles with arbitrary integer spin 

and masses may be written similarly to Eq. (9) in agreement with Refs. [9, 11] 
( ) ( ) ( )( ) ( ) ( ) i ( )

1 1 1 1

2 2 2
1 2... , ... ... ...

... ,
l l l l

l
Nx m m m U x j x

μ μ ν ν μ μ μ μ
− Π + + + =, , , ,     (41) 

where ( )
1 1... , ...l l

x
μ μ ν ν

Π  is the projection operator. Eqs. (9), (25), (41) are written for all the particles from some kind. In 

Refs. [9-11] it is shown that the physical currents i ( )
1... l

j x
μ μ

 must obey the theorem on currents and fields as well as the 

theorem on current asymptotics. Accordingly to the theorem on currents and fields the tensors of the physical currents 
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must have the same properties as the field tensors: 
i ( ) i ( )

1 1... ...
0, 0,

i il l
j x q j qμ μμ μ μ μ

∂ = =    (42) 

i ( ) i ( )
1 1... ...

0, 0.
i k i kl l

g j x g j qμ μ μ μμ μ μ μ
= =   (43) 

      The coordinate         The momentum 
representation        representation 

We consider the higher spin particles which move along the z -axis (i.e., ( )0 3,0,0,q q q= ). Then the integrals 

i ( ) 0 3

10 0 3 3... l

m mdq j q q q dq
μ μ

∞ ∞

−∞ −∞
∫ ∫        (44) 

must be convergent in accordance with Ref. [9]. The convergence of the integrals Eq. (44) correspond to theorem on 
current asymptotics. In the integrals Eq. (44) 0m  and 3m  are the integer non-negative numbers, ( )0 3 0,1,...,m m m j+ = . 

In Ref. [9] it is derived that ( ) 1m j = . Now we demand that the double Fourier transformation of the current 
components must converge to the values of these components in any space-time point. 

But it is possible if these components of l ( )
1... l

j x
μ μ

 are continuous and have continuous derivatives 

i ( ) i ( )
1 1... ...

0 3

, ,
l l

j x j x
x xμ μ μ μ

∂ ∂
∂ ∂

i ( )
1

2

...
0 3

l
j x

x x μ μ

∂
∂ ∂

 [3]. Therefore, we may derive that ( ) 3m j = . The convergence of the 

integrals Eq (40) is provided by form factors. The currents for the interaction of higher spin bosons with two spinless 
particles are derived in Refs. [12, 13]. These currents obey the theorem on currents and fields as well as the theorem on 
current asymptotic. This model allows to derive the finite value of the self-energy operator of the spinless particle 
corresponding to the contributions of the higher spin boson and spinless particle in one-loop approximation [11]. Note 
that, as it is well known, the contribution of two spinless virtual particles to this operator in one-loop approximation 
gives logarithmic divergence. From Eq. (41) we see that the maximal degree of the derivatives of the physical currents 
is the same as the similar degree for the physical currents in Refs.[9-11]. Therefore, the number ( )m j  does not change. 

Now we consider the equation system for the kinds of the 1- and 2-spin particles, which include the massless 
particles (i.e., 1 2 30, 0 ... Nm m m m= < < < < ). To derive the equation system we may put 1 0m =  in Eq. (41). But using 
the properties of the ( )U x

μ
 and ( )

1 2
U x

μ μ
 (in particular, Eq. (40)) we derive equations inluging the operators 2,  and 

3, , respectively. Thus, we obtain the equations similar to Eq. (13) with the mass 0m =  and the degrees 2,3,n =  
respectively. We regard the constants 1 0C ≠  and i1 0C ≠  in the solution Eq. (14) only to avoid the non-normalizable 
solutions. But the retained terms in the solution Eq. (14) correspond to the solutions of the equations ( ) 0U x

μ
=,  and 

( )
1 2

0U x
μ μ

=, . Therefore, we may write the equations: 

( )( ) ( ) ( ) ( )2 2 2
2 31, ... NJ m m m U x j x

μ μ
= + + + =, , , , ,     (45) 

( )( ) ( ) ( ) ( )
1 2 1 2

2 2 2
2 32, ... NJ m m m U x j x

μ μ μ μ
= + + + =, , , ,     (46) 

where the physical currents ( )j x
μ

 and ( )
1 2

j x
μ μ

 must obey the theorem on currents and fields Eqs. (42), (43) as well 

as the theorem on current asymptotics (Eq. (44)). 
The Eq. (45) can be used for the particles of the photonic kind ( 1 , 1pJ C−= = − ). Possibly the Eq. (46) can be 

used to take into account the quantum effects in the interactions of the gravitonic kind of the particles 
( 2 , 1pJ C+= = + ). The fields corresponding to last the 2 -spin particles may be regarded as addition to the fields 
considered in the general theory of the relativity at short distances. It is due to the fact that the general theory of the 
relativity does not include the quantum effects, which are just important at short distances. As it is known the quantum 
effects are important at the atomic distances already. Indeed, it is well known, that accordingly to the classical physics 
the atom cannot exist more than 1010−  c. Therefore, we may assume that the quantum effects are important at the atomic 
distances (which correspond to the density of the water) and at shorter distances. 

The Eqs. (45), (46) are similar to Eq. (9). Therefore we may assume that the solutions of Eqs. (45), (46) are 
continuous in any point of the space-time and the formulae similar to Eqs. (24), (35) – (38) are valid. Therefore, we may 
expect that the electromagnetic and the gravitonic interactions, ought to have the relaxation of the interactions at short 
distances, which is similar to asymptotic freedom. This is consequence of the higher degree of the differential equations 
(9) as well as necessary existence of massive photons and gravitons. 

We may expect that the use of the Eqs. (25) , (45), (46) allows to eliminate the quadratic divergences in the 
triangular anomaly for the graviton-photon-photon interaction [14]. 

If we assume that the gravitational interactions are described by Eq. (46) then at short distances the interactions are 
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relaxed (in accordance with eq. (38)) and we may conclude, for example, that the existence of the black holes becomes 
problematic. But the complete solution of the question on the existence of black holes is possible in the quantum theory 
of the gravitation. 

 
KINDS OF ELEMENTARY PARTICLES 

Consider the distribution of the elementary particles in the kinds (or the dynasties). For the photon and gluon we 
have that 1m  is equal to zero. Since for the particle of integer spin 3N ≥ , two (or greater) massive members of the 
photon kind must exist. They must have zero electric charge, 1pJ −= , 1C = − . These particles must contribute to the 
amplitudes of the reactions , ,e e e e e e e eμ μ+ − + − + − + − + −→ → →  hadrons at high energies and lead to the resonance 
behavior. We can expect that the coupling constants for the interactions of these members of the photonic kind with the 
leptons and the hadrons of the same electric charges must be equal. Therefore, the vector mesons , , , /Jρ ω ϕ ψ  cannot 
be the members of the photonic kind. Similarly, in the gluonic kind two (or greater) massive colored particles must 
exist. Besides, three (or greater) massive members must exist in the 0Z  - and W ±  - kinds. In relations with the 
necessary existence of massive photons and gluons such questions arise: 1) is the gauge invariance for massive photons 
and gluons possible or not? 2) is the scaling in deep inelastic lepton – hadron scattering at higher energies exist or not? 

It has been shown that for the 1
2

 - spin particles the number of the kind members (i.e. generations) must be equal 

to 5 (or greater). We assume that there exist electronic kind ( 1 2 3 4 5, , , , ,e e e e e eμ τ= = = …), the neutrinic kind 

( )1 2 3 4 5, , , , ,...e μ τν ν ν ν ν ν ν ν= = = , three kinds of the coloured up-quarks ( )1 2 3 4 5, , , , ,...u u u c u t u u= = = , and three 

kinds of the coloured down-quarks ( 1 2, ,d d d s= =  3 4 5, , ,...d b d d= ). Note that in our approach only one neutrino 
may be massless. The higher members of the electronic and quark kinds can decay. For example, 4e  and 5e  can decay 
into ,eνν μνν  (similarly to eμ νν→ ), and ν +  hadrons. We can assume the possibility of radiative decays 

4 5,e e μ γ→  or 4 5,e e μ γ γ→ . We can expect that such interactions of higher 0Z  and W ±  will be fairly weak in 
comparison with the interactions of 0 0

1Z Z= (92.4 GeV) and 1W W± ±= (81 GeV), as consequence of large masses of 
higher 0Z  and W ± . We may assume that: i) 0

2Z  or 0
3Z  or 2W ±  or 3W ±  can interact with right currents; i i) the 

interactions of 0
2Z  or 0

3Z  with fermion may be determined by the mixing matrix similar to the Kobayashi – Maskawa 
matrix and 0

2Z  or 0
3Z  can induce the transitions between the fermions of different generations (like to the 1s W u−→ - 

transition). Therefore in addition to the investigations of the decays 0
2,3Z μ μ+ −→ Χ  [2] it is of interest the study of the 

decays 0
2,3Z eμ±→ Χ∓ , which are forbidden in the Standard Model. Note that in our approach the massive photons 

( 2 3, ,.....γ γ ) as well as 0 0
2 3, ,...Z Z can decay into Xμ μ+ − . But the 2γ  and 3γ  cannot decay into e Xμ± ∓ . 

If higher neutrino, are enough heavy then fairly exotic decays 4,5 1, 2eν μν→  become possible. 
Since for fermions 5N ≥  the Kobayashi-Maskawa matrix must have the fifth (or greater) order. This can be 

important for the effects of CP  - violation. 
Possibly the leptons and the quarks from the fourth and fifth generations can be observed  in Fermilab or LHC. 

 
CONCLUSION 

We have shown that the integrals for the Green functions of the Klein-Gordon  and Dirac equations diverge as 
they have different values at different fashions of the calculations. The partial differential equations of the degree 
greater than four must be considered to derive the Green functions with convergent integrals. The generalizations of the 
Klein-Gordon and Dirac equations have been proposed. 

It has been shown that the Green functions of the proposed equations of the higher degrees are continuous 
functions, i.e., they have no any singularities in all the time – space. In particular, the interaction potentials have no 
singularities. It has been shown that in our approach the interaction forces must be proportional to the distances between 
particles at the short distances. We have derived that the interaction potentials must have the oscillatory form at short 
distances. It may be assumed that all interactions must be relaxed at short distances. 

The solutions of the generalized homogeneous Klein-Gordon and Dirac equations are the sums of the terms 
corresponding to the different particles of different masses which belong to different generations. 

The minimal number of the generations for bosons 3bN ≥  and fermions 5fN ≥ . We may assume that these 

numbers are for kinds of the elementary particles such as electronic, neutrinic, up-quarks, down-quarks, photonic, 0Z -, 
W ± -, gluonic, gravitonic kinds (and possibly the kind including the Higgs boson). For the composite particles the 
minimal degrees of Eqs. (9) (25) can be great than 2 bN  and fN , respectively. We consider the degrees of these 

equations for the π ± -mesons and the nucleous. As in the quark model π ± -meson consists of the u -quark and d -
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antiquark, we may assume that the each particle from the π ± -kind consist of one up-quark ( u -, or c -, or t -quark, or 

4u  or 5u ,…) and one down-antiquark ( d -, or s -, b -antiquark, or 4d , or 5d ,…).Thus the minimal degree of Eq. (9) 
for the particles from π ± - kinds is equal 2N (π ± - kinds)= 22 fN  (i.e., the number of the generations in the π ± -kinds 

equals 2 25fN = ).The π ± -kind include π ± -, K + -, ( )1869D± -mesons. 
As it is known the proton consists of two u -quark and one d -quark. Therefore, we assume that particles from 

protonic kind consist of two up-quarks (electric charge 2
3

Q = , where e is the proton charge) and one down-quark 

1
3

Q⎛ ⎞= −⎜ ⎟
⎝ ⎠

. We begin from the consideration of one pair of u - and d - quarks. Then we can use the representation of 

the ( )4,SU FS -symmetry. From the Pauli principle for three such quarks it follows the representation of ( )4,SU FS -
group must be symmetric with the component number 4 5 6 /1 2 3 20⋅ ⋅ ⋅ ⋅ = . The expansion of this representation with 
respect to the representations of the ( ) ( )2, 2,SU F SU S× -group is given by 20 4 4 2 2= × + × , which correspond to 

the Δ -isobar (the 3
2

-spin) and the nucleon (the 1
2

-spin). To derive the number of the generations in the protonic kind 

we consider the product of fN  (for down-quarks) times ( )1 / 2f fN N +  (the number of symmetric states for two quarks 

from - quark kind). As result we derive N  (proton kind)= N (neutron kind) ( )2 1 / 2f fN N≥ + . In particular, we have 

N  (proton kind)= N (neutron kind) 75≥  for 5.fN =  It is the number of the generations for the protonic kind and 
simultaneously it is the degree of Eq. (25). The protonic kind includes such known particles as 

( ) ( ), 1189 , 2285cp + +Λ∑ . 
From the consideration of the particle kinds we may conclude that the classification of the quarks and the hadrons 

must be changed. 
In our approach the propagators of the bosons and the fermions decrease as ( )2 bN

q
−

 and ( ) / 22 fN
q

−
 as 2q →∞ , 

respectively. Therefore, we may expect that the renormalizations will be finite in our approach. In addition the number 
of the coupling constants reduces, e.g., the interactions of all the particles from the pionic kind (25 or greater particles) 
with the particles from the protonic and the neutronic kinds (75 or greater particles) is described by one coupling 
constant (at known the quark masses). 

Howewer, to show these results the number of tasks and problems must be solved. In particular, the Lagrangians 
which lead to Eqs. (9), (25), (41), (45), (46) must be derived. 

These Lagrangians can be used to obtain the energy-momentum tensors and to study the invariance under the 
gauge transformations for the particles from the photonic and gluonic kinds, which include massless particles (photon 
and gluons) and the massive particles. The S -matrix must be derived to calculate the reaction amplitudes. Besides, the 
known results of the Standerd Model (as well as the results of ( )3,SU F -symmetry) must be reproduced in our 
approach. 

Now we present same consequences of Eqs. (9), (25): 
1. The massive photons ( 2γ  or 3γ ) or 0

2Z  or 0
3Z  can decay into Xμ μ+ −  observed in Ref. [2]. The investigations of 

the decays into e Xμ± ∓  may be of importance to separate the possible manifestations of massive photons and heavy 0Z  
( 0

2Z  or 0
3Z , or…). 

2. One neutrino may be massless and four (or greater) neutrinos must be massive. 
3. The Kobayashi-Maskawa mixing matrix must have fifth (or greater) order. It may be important for the effects of 
the CP – violation. 
4. In relation with necessary existence of heavy gluons the question on the scaling at higher energies can arise. 
5. If higher neutrinos are enough heavy then the fairly exotic decay 4,5 1,2eν μ ν±→ ∓  may be possible. 
6. In spite of necessary existence of massive photons the results developed in large distance physics (in such as the 
solid state physics, the plasma physics, the statistical physics, the atomic physics, the low energy nuclear physics) 
practically do not change. 
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