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It is shown that the values of the infinite integrals for the Green functions of the Klein — Gordon and Dirac equations depend on the
method used for its calculations, i.e., these integrals diverge. The Green functions proposed to eliminate these divergences include in

the denominators the polynomials of the N degree instead of one factor m* — c]2 or m —E] for the Klein — Gordon equation or the

Dirac equation, respectively. The corresponding generalizations of the Klein — Gordon and Dirac equations have 2N and N
degree, respectively. The solutions of these generalizations for the Klein — Gordon and Dirac equations may be presented by the sum
of N terms, each term corresponds to the contribution of one particle (one generation). All these particles have different masses but
the same spin, parity, charge, isospin. Since the space — time is 4 — dimensional one, the convergence of the integrals for proposed
Green functions is possible only if the generation number N is not less than three for integer spin particles and not less than five for
half — integer spin particles. It is shown that the proposed Green functions have no any singularities in the space — time. In particular,
the interaction potentials must have the oscillator form at short distance. It is predicted that two (or greater) massive particles with
quantum numbers of the photon and gluons must exist. Besides, five (or greater) fermions with quantum numbers of the electron, the
neutrino, the u — quark, and d — quark must exist (e.g., e =e e =M =T,¢,é¢,.., and

u, =u,u, =c, U, =t, u,, Us,....). The massless neutrino must be one. If higher neutrinos are enough heavy then the decay
Vv, s — epv,, may be possible.

KEY WORDS: convergence, multiple integrals, Green functions, partial differential equations, oscillatory potentials, particle
generations, massive photon, massive gluons, massive neutrino.

PACXOJIUMOCTHU UHTEI'PAJIOB JIUISI ®YHKIIUI TPUHA YPABHEHMIA KJIEWHA - TOPJTOHA U JUPAKA U
HEOBXOJUMOCTH CYIECTBOBAHUS MIOKOJEHU YACTHI]
10.B. Kyaum, E.B. Pei6auyk
Ykpaunckas zocyoapcmeennas akademus jcee3Ho00pOAICHO20 MPancnopma
Vrpauna, 2. Xapvros, nn. @eiiepbaxa ,7
IMoka3zaHo, 4TO 3HAa4YEHMsI HECOOCTBEHHBIX MHTEerpanoB st ¢yukimil ['puna ypaBuenuit Kineiina — I'opnona u [lupaka 3aBUCAT OT
METO/1a BEIYMCIICHHUS, T.€. 9T MHTerpaibl pacxoasarces. @yHkuun ['puHA MpeuIoKeHHbIe AT YCTPaHEHNS pACXOAUMOCTEH cozieprkar

2 2 . v
B 3HaMEHATENAX IOJIMHOMBI cTerneHn N BMecTo OAHOIO MHOXWTCISL M —(¢ WA M —(g IJs YypaBHCHUU Kneiina — FopnOHa u

Jupaxka, coorBerctBeHHO. CooTBeTCTBYyOIIME 00001eHus ypauenuil Kieiina — ['opmona u dupaka umeror nopsiaku 2N u N,
COOTBETCTBEHHO. Pemienns Tux o6obuiennii ypasuennii Kieiina — Topaona u Jlupaka MOXKHO MPEICTABUTH B BUAE CyMMbl N
CJIaraeMbIX, KaXK/blil U3 KOTOPBIX COOTBETCTBYET BKJIAdy OAHOI yacTHIb! (OAHOIO MOKoJeHus ). Bce 3Tu yacTULBI HUMEIOT OJHU U TE
e 3HAUCHUs CIMHA , YeTHOCTH, 3apsjia U30CIUHA, HO Pa3Hble Macchl. Tak Kak MPOCTPAHCTBO-BPEMsl UMEET YeThIpe U3MEPEHUsl, TO
CXOIMMOCTb MHTErPAIOB [UIs MPEANOKEHHbIX QYHKIHI ['prHA BO3MOXKHA TOJIBKO €CIIM KOJIMYECTBO MOKOJIeHHi N He MEHbIIe Tpex
JUISL 4aCTHIL C LEJIbIM CIIMHOM M He MEHee IISITH JUI YacTHUI] C MOoJyLensiM ciuHoM. IToka3aHo, 4To npeyioxkeHHbsle GyHKIMU ['punHa
HE MMEIOT CHHIYJISIPHOCTEH BO BCEM IPOCTPAHCTBE — BPEMEHHM. B uyacTHOCTH, NMOTEHLMANbl B3aUMOJCHCTBHH MOJKHBI UMETh
OCIIMJUISITOPHBIN BHJ Ha MaIbIX paccTosiHUsX. [Ipeacka3piBaeTces, YTO JOJKHBI CYLIECTBOBATH JBE (MM OOJIbIIE) MACCUBHBIX YaCTHUI]
C KBaHTOBBIMU 4uciIaMu (oToHa u rmooHa. Kpome TOro, TOMMKHBI CyIIECTBOBAaTh MATh (MM Oouiblle) (ePMHUOHOB C KBAaHTOBBIMH
YMCIIAMM  OICKTPOHA, HEHTPHHO, U - KBapKOoB W d - KBapKOB HampuMmep, € =¢€,e, =M, e =7T,€,,6s,... U

u, =u, u, =c, Uy =t, u, Us,...). besmaccopoe HEHTPUHO MOXKET OBITH TONLKO OAHO. Ecnm BpICIIME HEHTPHHO HMMEIOT
JIOCTaTOYHO OOJIBIINE MACCHI, TO BO3MOXKEH paciai V, s —> eUV,, .

KJIIOYEBBIE CJIOBA: cxoaMmocTh, KpaTHble HHTerpaibl, ¢yHkuumu I'puHa, nuddepeHnpanpHble ypaBHEHHsS B YaCTHBIX
HPOU3BOAHBIX, OCHHUISITOOPHBIE TIOTEHINAbI, MACCUBHBIH ()OTOH, MACCUBHBIH TIIOOH, MACCHBHOE HEUTPHHO.

PO3BIKHOCTI IHTET'PAJIIB JIJIS1 ®YHKIIA I'PIHA PIBHSAHB KJIEMHA - TOPJIOHA TA JIIPAKA I
HEOBXIJTHICTb ICHYBAHHSI IIOKOJIIHb YACTUHOK
10.B. Kyaim, O.B. Pudauyk
Yxpaiucvka oepoicasna akademis 3aniznuuno2o mpancnopmy
Vxpaina, m. Xapxis, na. @eiicpbaxa, 7
IMoka3zaHo, 110 3HaYECHHsS HEBIACHUX iHTerpaiiB s QyHkuiit I'pina piBusue Kieiina - I'opaona ta [lipaka 3anexartb Bil METORY
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obuucieHHs, TOOTO wmi iHTerpaau posdiratotbes. @Dynkuii I'piHa 3ampornoHOBaHi Ul YCyHEHHS PO3ODKHOCTEH MICTATH Yy
. . 2 2 - . o .
3HAMCHHHKAX IOJIHOMH cTyreHs N 3aMiCTh OJHOro MHOXHHKa M~ —¢g~ abo m—¢q s piBusHb Kieiina - Toprona ta [lipaka,

BianosigHo. Binmosinni y3aransuenus pisusub Kieiina — Topaona i Jipaka marots nopsaku 2N ta N, Bianosiguo. Po3s’s3ku
X y3arajbHeHb piBHsHb Kiieiina - Topiona i Jlipaka MOKHa IIpeACTaBUTH Y BUTIISL cymu N JJOJIAHKIB, KOKEH 3 SIKAX BiJIMOBiae
BHECKY OJIHI€1 YaCTUHKH (OJTHOTO MOKOJIHHS). BCI 11l YaCTMHKM MarOTh OZHI M Ti ) 3HAUYEHHs CIIHY , TAPHOCTI, 3apsy, 130CIHiHy, aje
pi3Hi Macu. OCKUIBKH MPOCTIp-4ac Ma€ YOTHPH BHUMIpH, TO 30DKHICTH iHTErpaiB AJsl 3ampornoHoBaHuX (QyHKUiK ['piHa MoxMBa
TUIBKH SKIIO KiTBKICTh MOKOJMiHE N He MEHIIA TPHOX [UIsl YACTHHOK i3 IIJIMM CITIHOM Ta He MEHIIE M'SATH JUIs YaCTHHOK 13 MiB-1IIIMM
crinom. [lokazano, mo 3anpononoBani ¢GyHKIil ['piHa He MarOTh CHHTYJISIPHOCTEH Y BChOMY IIPOCTOPI - 4acy. 30KpemMa, IOTeHIiaIH
B3a€MO/Ii} TOBUHHI MaTH OCIWJUIITOPHUI BUIJIS Ha ManuXx Bifcransx. [lepenbadeno, 1o /Bi (abo Ginbliie) MACHBHUX YaCTHHOK 3
KBAaHTOBUMH 4YHCIaMH (DOTOHA i TJII0OOHA MOBHHHI icHyBaTH. OKpiM 1bOro 1m’sth (abo Oinbuie) GepMioHiB 3 KBAHTOBUMHU YHCIAMH

eNIeKTpOHA, HEWTPHHO, U - KBapkiB Ta d - KBAapKiB IOBHHHI iCHyBaTH (HAalpHKIam, € =e, e, = [, e =T, ¢€,, e;,... Ta
U, =u, u, =c, Uy =1t, U, Us,...). besamacope HEUTPHMHO MOKe OyTH TiNLKU OAHE. SIKIO BUII HEHTPUHO MaKOTh JHOCHUThH BEJIHKI

MacH, TO MOXKJIMBHH po3nag Vv, s — eV, , .

KJIIOYOBI CJIOBA: 30ixHicTh, KpaTHi iHTerpanu, ¢yHkuii ['piHa, audepeHuianbHi PIBHAHHA B YaCTUHHHX MOXIIHUX,
OCLWJIATOPHI OTEHIialIi, MAaCUBHUH ()OTOH, MACHBHUII IIIOOH, MaCHBHE HEUTPHUHO.

In the quark model it has been shown that the hadrons consist of the quarks of six flavors. Therefore, now only the
leptons, the quarks, the photon, the gluons, W* , and Z° are considered as elementary particles. The study of the axial
Adler — Bell — Jackiw anomaly shown that the contribution of one 1/2 - spin particle (a quark or a lepton) gives a linear

divergence [1]. But taking into account of some sets of leptons and quark, such as e,v,,u,d or u, v, ,c, s or

M2
7,v,, t, b, allows to eliminate this divergency. Thus, the convergence of the axial anomaly gives the relation between

the quarks and the leptons.

In connection with this the question arises: why do the generations of particles exist? We can remember the words
of L.B. Okun that we good understand the reasons for the existence of some new particles. But we do not understand:
why do old particles (for example, the muon) exist. Now the generations of the fermions are known only. Therefore, the
question is arisen: do the generations of bosons exist or not? In Ref. [2] the results of the investigations for the decays of

heavy neutral particle into x* 4~ X are presented. These results may be considered as the manifestation of now neutral

boson Z°’, which participates in the weak interactions. The existence of such weak-interacting boson may be great of
importance, as then it is clear that the Standard Model is not complete. In relation with this it is of interest to investigate
the theoretical reasons for the existence of the fermion and boson generations.

At present paper the bases of the elementary particles theory are studied to answer on the question related to the
existence of the particle generations. We show that the particle generations must exist.

PARADOX OF THE GREEN FUNCTIONS
Let us consider the particle propagators, i.e., the Green functions. It is well known that in the static case the
exchange by the massless particle gives the Coulomb (Newton) potential
1
V(r0)=1—: (1
where r is the distance between the point charge and the point of observation.
The exchange by the particle of the mass m gives the Yukawa potential

1 e™
V(r,m)=——. 2
(rm) =~ )
These potentials are the Green functions
igx
V(r,m)=G()?,m)=;I~2e—d3q, 3)

(27) " ¢ +m?
where r = |5c| Note that we can put m =0 in Egs. (2), (3) for the Coulomb potential. In the relativistic case the

exchange by the boson of the mass m can be expessed by means of the Green function for the Clein-Gordon-Fock
equation

1 e d*
D(xm)=— [ £ 104 @
(2;;) —-q +m
For the 1/2 - spin particle the Green function of the Dirac equation has a form
- —igx 74
1 qg+m)edq
S(x,m) = [ (a-m) : (5)

_qz m?
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Usually the expressions (1) and (2) are derived from Eq. (3) by the calculations of the integrals in the spherical frame.
Note that the integral in Eq. (3) is the infinite threefold integral. As it is known, the improper (in particular infinite)
integral converges in that case only if the calculations of it give the same finite result by any possible methods. The
convergences of improper onefold and multiple integrals have some distinctions. Thus, for multiple improper integral
the conditional convergence does not exist. In Refs.[3, 4] it is proved that if the twofold improper integral converges
then it converges also absolutely (i.e., the improper twofold integral with the module of the integrand converges). This
is valid for any multiple improper integral too [4]. Thus, for the multiple improper integrals the convergence and the
absolute convergence are equivalent [4]. Therefore, multiple improper integral converges then and only then when this
integral converges absolutely. Thus, the integral in Eq. (3) converges only in the case of the convergence of the integral

1 d’q
—3_"27 : (6)
(27) "¢ +m
But this integral diverges. Therefore, the integral in Eq. (3) diverges. To see this immediately we integrate Eq. (3) in the

D -~ . 1. . .
cylindrical frame. We choose x = (0, O,r). Then Gx =¢q,r and d’q= Ed ‘q l‘z dpdg, . We integrate in the next order:

with respect to the angle ¢,

q.|, g, respectively. Thus, we derive

400 o0 42
G(%,m)= o dg, [
0q +q3 +m’
_ L [ e dg, { fim 1n(E,j o m2)—1n(q§ o )} - )
& =, 7t -
—Lé‘( ) lim In Llim Ing, sin r+—~ew
2z laz}>e 0. DYk e Ly,

We see that this integral diverges since the first term is indefinite and the limit in the second term does not exist, but
these diverging terms do not depend on the particle mass. Note that the infinite three-fold integrals m,s (3), (7)

converges only in the case if calculations of it by all possible methods give the same finite value. In particular, the limits

q,

in Eq. (7) must have the same value when g, — to0, g, -+, g, > 0, ( - oo).
For the Green function of the Klein — Gordon equation we calculate the integral (4) with respect to the spatial

variables by integration in the cylindric frame similarly to the integral (7). Then we derive

-2
quo j dg,e™ I B 4. =

D(x,m)= —
0q, +qi—q; +m ®)

163

j dq,e™ " j dq, e'n [ lim ln + q32 —qg +m?

16 — —1n‘q§—q§+m2‘:|.

In last improper integral the indefinites related to the transitions Z] | =, g; > *0, g, — oo arise as addition to the

indefinites in Eq. (7). They are the additional of sources of the divergence for the Green function of the Klein — Gordon
equation.
From the comparison of the integrands in Eq. (4) and Eq. (5) we see that the integrand in Eq. (5) includes the

additional factor 2] which is related to the integration variables. Therefore, the improper integral (5) for the Green

function of the Dirac equation diverges also.
Thus, we derive the paradox (paradox of the Green functions):
From the mathematical point of view the use of the Green functions (1)-(5) is incorrect, but these Green functions
(calculated by some fashion) give adequate description of different experimental data.
We may assume that the solution of the Green function paradox is possible by two ways: 1) We can conclude that
existing theory is wrong and we must find new theoretical approach based on new mathematical methods; 2) We can try
to modify existing theory.

GENERALIZATIONS OF KLEIN —- GORDON AND DIRAC EQUATIONS
We consider second way by means of proper modification of the Green functions and corresponding
generalization of the Klein-Gordon and Dirac equations. We propose:
1) The generalizations of the Klein-Gordon and Dirac equations must have some simple form;
2) The existing expressions (such as Egs. (1), (2)) can be derived from new generalized Green functions in some
limit.
We propose that the generalized non-homogeneous Klein-Gordon equation has 2N degree, and may be written as
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(|:|+m12)(|:|+m§) ........ (D+m§,)q)(x) =7n(x), 9)
where gp(x) is the field and n(x) is the current (the field source). The Green function for Eq. (9) is given by
_ 1 e*iqxdétq 1 e*iqxdéiq
G(x)= = , (10)
(x) (27[)4 J.(—q2 +m12)(—q2 +m22)....(—q2 +m,2v) (27[)4 '[ P, (qz)

where P, (qz) is the polynomial of the degree N with respect to ¢*>. We consider the case of the polynomial with real
non-negative different zeros m, <m, <m, <....<m, . Note that for the advanced, retarded and causal Green functions
we must write the corresponding imaginary infinitesimal term to each ¢, or m; , respectively.

The general classical solution ¢, (x) of the linear equation (9) is the sum of the general solution of the

corresponding homogeneous equation (p(x) ee and partial solution (o(x)”h of non-homogeneous equation:

N
¢(x)ﬁee = Id“qZé(qz —m; )[c,{e”q’Y + 5,(8”] , (11)
k=1
o(x),, = [d*VG(x=y)n(y)d'y. (12)
where ¢, and ¢, are the arbitrary constants. Thus, (p(x) ee is the sum of the terms corresponding to particles with the

same charges, parity, but with different masses. Each term in Eq. (11) corresponding to the index & is the solution of

the homogeneous Klein — Gordon equation: (D+m,f)(cke”"’" +Eke”"’") o (q2 —mf) =0. We exclude the case of equal
masses in Egs. (9) and (10). We can show that the functions w(x)» ee 4T€ DON- normalizable if at least two masses are
equal. Consider the equation similar to Eq. (9) in the case of n equal mass m (i.e., m is n - fold root):
(|:|+m2)n<D+m2)...(m+mN7”)(p(x)=77(x). (13)

The part of the classical solution go(x)_ fee corresponding to the equal masses may be written in general form similarly to
Eq. (11):

(p(x)n,_/'ree = _[d4q§(q2 - m2 ) ’

{[Cl +C, (xa,)+Cy(xay ) (xa, ) +...+C, (xa,,, ) (xa,, )-(xa, ., )J e + (14)

+ [61 +C» (xb1 ) +Cs (xb21 )(xb22 ) +...+C, (xbn_l’1 )(xbn_l,2 )----(an_1,n_1 )J e’i""'} ,
where ¢,G,....C

no

C,Cs,...,Ch are  arbitrary  constants, and a, b, a,,a,,b,,b a

21> 7225 nfl,l’a

n-1,22

@, i,y b,1,b,,,b,,., are arbitrary 4 - vectors, which do not depend on the components of the 4 - vector x . As it is

known, w(x)|2 is the probability density and

(o) @x=1, (s)
i.e., one particle is in the volume V" . For eaVch term in the solution (11) it is easy to derive

%I}[ﬂexp(iiqx)r d’x=1. (16)
But for one term in Eq. (14) we have (at equal vectors q,,,q,,,...,a,, ):

I_[H(xa)k exp(iiqx)‘2 d’x, k=12,...,n—1. (17)
These integrals depend on the time x, and zve cannot find some constant to derive 1 for such integrals. Moreover,

lim J‘.!H(xa)k exp(iriqx)‘2 d’x=w (18)

The non-normalizable solutions of Eq. (13) can be eliminated in the case of non-zero constants C, 1 and G only in the
solution (14). But in this case we derive the solutions of Eq. (13) at n=1. Then we may introduce new current
n (x)= (D+m2)"71 77(x) . Thus for the normalizable solutions the Eq. (13) is reduced to the Eq. (9). Therefore, for the

solution in case of equal masses the relation (15) cannot be valid. Thus, the masses in the generalized Klein Gordon
equation must be different. We can write
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1 e (19)
A== lim LT g = (=1) 4.

For the coefficients 4, the following relations are valid:

N
> Am! =0, 1=0,1,2,.,N-2, (20)
k=1
ﬁ‘,A 2N-2 _

V=1, 1)
k=1

To prove the relations (20), (21) we introduce z=1/¢> and use the expantion of the fractions in the geometrical

series. Then we can expand Eq. (19) in the power series
ZN 0
=»az", (22)
(l—mlzz)<1—m§z)~-(l—m]2vz) HZ:;

and
N
a, =(=D""> Ami" (23)
k=1

We see that the series in the left side of Eq. (22) begin from n = N, but in the right side begin from n =1. Therefore,
the coefficients a, =0 for n=1,2,...,N—1. It gives the relations (20). In addition we have a, =1, i.e., the relation

(21) is valid. Using the equality (19) we can express the Green function (10) of Eq. (8) in terms of the Green
functions (4)

G(x):iAkG(x,mk). (24)

As the dimension of the time-space is equal to four the integral (10) can be convergent at N >3 . Consequently for each
spinless particle two (or greater) particles with the same charges, isospin, C - and P parity, but different masses, must
exist in addition. We may say that such particles are members of some set (a family or a kind or a dynasty). The
members of different kinds belong to the generation. In Egs. (11), (19) & is the number of the particle generation. We
may assume that the numbers of the members for the elementary particle kinds are less than the member number for the
composite particle kinds. Each particle belongs to some kind and some generation.

1 . . o . .
For the 5" spin particles we propose the next genertization of the non-homogeneous Dirac equation

(—ié+m1)(—ié+m2) ..... (—ié+mN)l//(x)a :;((x)a , (25)
where « is the bispinor index.
The classical solution of the homogeneous equation (25) is given by analogy with Eq. (11)

N ~ L
v(x),. =22 [d'po(a" —mi) G, (a)e™ +Cuavi, ()€™ | (26)
s k=1
where s corresponds to the spin projection, u, , (¢) and v, (g) are the spinors, C, , and Ci.. are arbitrary constants.

(a2m)(am)--{(aem))

) (g e ) @7

The Green function for this equation may be written as

§(x)=— j(

(27)

For the integrand in Eq. (27) we may write
(om)  (a+m)  (3+m) | 1

RN(Z]):( : _ I N

—g*+m) (=7 +m) (=g +my) (—gem)(-g+m)-(~g+my) Oy (q)

(28)

N q+m, 1 . —(}+mk k+1
N J i S B =-— = lim kB o=(-1
> gy g A

For the B, coefficients the relations similar to Egs. (20), (21) are valid:
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N
> Bm, =0, for [=0,1,2,...,N -2, (29)
k=1
N
> Bm) " =1. (30)
k=1

For the Green function (27) we may write
N

E(x)=kzjil: (x,m,) sz (18+mk) (x,m,). (31)

k=1
. . 1 . . .
The integral (27) can be convergent at N >5 only. Thus, for each spin - 5 particle four (or greater) particles with

different masses but with the same charges, spin, P - parity must exist in addition.

ABSENCE OF SINGULARITIES IN GREEN FUNCTIONS OF GENERALIZED KLEIN — GORDON AND
DIRAC EQUATIONS
Since the generalized Klein-Gordon equation (9) and generalized Dirac equation (19) have degree greater than
four their Green functions and their first partial derivatives can be continuous function of the time and spatial variables,
i.e., these Green functions cannot have any singularities (more precisely these Green functions can have the removable
discontinuity). Note that the Green functions of the Klein-Gordon equation have singularities on the light cone, such as

) (xz), 1/x%, ®(x2), ln‘xz‘ [5, 6]. The singularities disappear in causal B(x)f, advanced B(x)a .» and retarted

B(x)m by similar fashion. For example, using the expression for the causal Green function of the Klein — Gordon

equation [5] near light cone and Eq. (24) we derive

N 2
[ ol o)

i x° 16rxm

> - (32)
. my f2 _ 1 2
+ZW|:lnmk +1n( ‘x ‘ /2):|:| —W;Akmk lnmk.
The singular terms including & (xz) — (and @ ln‘x ‘ ) disappear in G( )c as consequence of the relation (20)
at /=0 (and / =1). The continuous casual Green function may be written as
ZA mk Inm,, X2 =0,
=/ e 87’
G(x)z‘(mt = (33)
ZAkGC (x,m, ), x*#0.
k=1

Similarly, the elimination of singularities in the Green function of generalized Dirac equation can be derived. In
particular, for continuous causal Green function we have in accordance with Egs. (31) and (32):

N
ZBkm,f Inm,, X' =0
E('x):ont = k}\:Jl (34)
ZBkS(x,mk)c, ¥ #0
k=1

The elimination of the singularities for the Green function can be shown in the static case too. Similarly to Egs.
(9), (10), (24) we have the generalization of the Yukawa potential

6(7)= 2 4G(mm )= 2 <

Each term of the sum in Eq. (35) has singularity at r = ‘;c‘ =0 (i.e., on the light cone x* =0-r>=0). Using the

—myr

(35)

7

2.2 3.3
m.r m.r

expansion e " =1-m,r+ —T+... at small r and relations (20) for / =0 and 1 we derive
== 1 m,fr2
G(x) ~—— A . (36)
4r 4o 6

Note that the change of the sigh in 4, corresponds to mutual change of the attraction and the repulsion in the

interaction potential (35) with the number & . The continuous 5(}) is given by
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1 N
™ Z Am,, r=0,
=(= T k=1
G(x)cont - 1 N e’mk" (37)
—> 4 —, r#0.
4= r

The function é(;c) has no any singularities, as contrast with the Goulomb and Yukawa potentials. From Eq. (36) we

see that the potential must have the oscillatory form at short distances. Note that, the oscillatory potentials are widely
used in the nuclear physics and in the quark models [7, 8]. But in these cases the parameters of the oscillatory potentials
are determinated from the experimental data. The interaction force at small r

ﬁ(;):—grada()—c)=%i4(m,f (38)
=1

has no any singularities too. It is interesting to note that F (0)=0. Thus, we see that the exchange by all the particles

from boson kind leads to the relaxation of the interaction at short distances. This is similar to the asymptotic freedom.
Note that if to use for V(r,mk) the result (7) derived in the cylindrical frame instead of Eq. (2) then the

contributions of the diverging terms vanish, as consequence of the relation (20) at / = 0. Thus we derive Egs. (35), (36)

using for ¥ (r,m, ) Eq. (2) and Eq. (7). This confirms the convergence of 5(;) .

LOW - ENERGY LIMITS
Consider the question about the reproduction of the results derived early (such as Egs. (1) and (2)) in our
approach. It is easy to see from Eq. (35) that at relatively large » in the sum the term including m, is important only,

i.e., at relatively large » @(fc) approximately is equal to the Yukaua potential. Simultaneously large » corresponds to

small components of the ¢ - momentum. Assume that m, /m, <1 for k=2,3,.,N. Then we can rewrite

approximately the equations (9) and (25) in forms
(0m? ) mi2.mp(x) = (),
~ 39)
(—ia +m, )mz...mNt//(x) = 7(x).
These equations practically coincide with the non-homogeneous Klein-Gordon and Dirac equations for the particles
with the mass m, .

We can reduce at large distances (i.e., in low energy approximation) the equations (9) and (25) to the non-
homogeneous Klein —Gordon and Dirac equations, respectively, by means of the redefinitions of the interaction
currents. We have seen from Eq. (7) that the calculations of the Coulomb and Yukawa potentials (1), (2) by means of
the integral (3) are incorrect. But we derived these potentials as large-distance limit of the Green function for the
generalization of the Klein — Gordon equation in the static case (35). In consequence of this and approximate validity of
the Klein —Gordon equation at low energies (at large distances), we may assume that the use of the Coulomb and
Yukawa potentials in the low energy physics is admissible. In particular, the results derived in the solid state physics,
the plasma physics, the statistical physics, the atomic physics, and low energy nuclear physics are valid.

EQUATIONS FOR KINDS OF BOSOS WITH HIGHER SPIN
The interactions of the higher-spin particles usually described by the systems of non-homogeneous Klein-Gordon

and Dirac equations. We consider the higher spin particles with integer spin J =/ (J > 1) in the Rarita-Schwinger

formalism. The fields corresponding to these particles are described by the tensors U (x) and U (q)ﬂ » (in the

Hope by

coordinate and the momentum representations, respectively). These tensors are symmetric, traceless and
aﬂiU(x) =0, qﬂlU(q) =0, (40)

Myt Moty
where i =1,2,...,[.

The generalization of the Klein-Gordon equation system for the kind of the particles with arbitrary integer spin
and masses may be written similarly to Eq. (9) in agreement with Refs. [9, 11]

(_D)I H(x)m---ﬂ,,vl---w (|:1+m12)(|:1+mz2 )...(|:|+m12V )U(x)/ll__m = jN'(x)#]__#[ , (41)

where H(x) is the projection operator. Egs. (9), (25), (41) are written for all the particles from some kind. In

oy ld] VYV

Refs. [9-11] it is shown that the physical currents ]~ (x)ﬂ ., must obey the theorem on currents and fields as well as the

theorem on current asymptotics. Accordingly to the theorem on currents and fields the tensors of the physical currents
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must have the same properties as the field tensors:

0,0 (%), ., =0 4., (a),, ,, =0 (42)
g#y/’k '] (x);t].../z, = 0’ g#i#k '] (q),ul...,u, = 0 (43)
The coordinate The momentum

representation representation

We consider the higher spin particles which move along the z -axis (i.e., ¢ = (qO,O, 0, q3) ). Then the integrals

Jaa ][0,

must be convergent in accordance with Ref. [9]. The convergence of the integrals Eq. (44) correspond to theorem on
current asymptotics. In the integrals Eq. (44) m, and in, are the integer non-negative numbers, m, +m, =0,1,..., ﬁ( j )

ms

0| |a,|" da, (44)

In Ref. [9] it is derived that rﬁ( j):l. Now we demand that the double Fourier transformation of the current
components must converge to the values of these components in any space-time point.

But it is possible if these components of (x)# ,, are continuous and have continuous derivatives
14

0 ~ 0 ~ 627

—Jj(x ,—J (x ,——Jj (x 3]. Therefore, we may derive that m( j)=3. The convergence of the
5)60 J( )/11---/1/ axx j( )#1---#1 8)(}06)63 j( )/‘1---#1 [ ] y (J) g

integrals Eq (40) is provided by form factors. The currents for the interaction of higher spin bosons with two spinless
particles are derived in Refs. [12, 13]. These currents obey the theorem on currents and fields as well as the theorem on
current asymptotic. This model allows to derive the finite value of the self-energy operator of the spinless particle
corresponding to the contributions of the higher spin boson and spinless particle in one-loop approximation [11]. Note
that, as it is well known, the contribution of two spinless virtual particles to this operator in one-loop approximation
gives logarithmic divergence. From Eq. (41) we see that the maximal degree of the derivatives of the physical currents

is the same as the similar degree for the physical currents in Refs.[9-11]. Therefore, the number ﬁ( i ) does not change.

Now we consider the equation system for the kinds of the 1- and 2-spin particles, which include the massless
particles (i.e., m; =0, 0 <m, <m, <...<m, ). To derive the equation system we may put m, =0 in Eq. (41). But using

the properties of the U (x)ﬂ and U (x) (in particular, Eq. (40)) we derive equations inluging the operators o’ and

Hip
o’, respectively. Thus, we obtain the equations similar to Eq. (13) with the mass m =0 and the degrees n=2,3,
respectively. We regard the constants C, #0 and Ci #0 in the solution Eq. (14) only to avoid the non-normalizable

solutions. But the retained terms in the solution Eq. (14) correspond to the solutions of the equations oU (x)ﬂ =0 and

oU(x) =0 Therefore, we may write the equations:
2

J=1, D(D+m22)(|:|+m32)...(D+m§,)U(x)ﬂ =j(x), (45)
J=2, |:1(|:H—m22)(|:|—i—m32)...(|:|+m§,)U()C)WI2 =j(x) (46)

Hifo

where the physical currents j (x)ﬂ and j (x)y ,, must obey the theorem on currents and fields Eqgs. (42), (43) as well

as the theorem on current asymptotics (Eq. (44)).

The Eq. (45) can be used for the particles of the photonic kind (J? =17, C =-1). Possibly the Eq. (46) can be
used to take into account the quantum effects in the interactions of the gravitonic kind of the particles
(J” =2", C=+1). The fields corresponding to last the 2 -spin particles may be regarded as addition to the fields

considered in the general theory of the relativity at short distances. It is due to the fact that the general theory of the
relativity does not include the quantum effects, which are just important at short distances. As it is known the quantum
effects are important at the atomic distances already. Indeed, it is well known, that accordingly to the classical physics
the atom cannot exist more than 107" c. Therefore, we may assume that the quantum effects are important at the atomic
distances (which correspond to the density of the water) and at shorter distances.

The Egs. (45), (46) are similar to Eq. (9). Therefore we may assume that the solutions of Egs. (45), (46) are
continuous in any point of the space-time and the formulae similar to Egs. (24), (35) — (38) are valid. Therefore, we may
expect that the electromagnetic and the gravitonic interactions, ought to have the relaxation of the interactions at short
distances, which is similar to asymptotic freedom. This is consequence of the higher degree of the differential equations
(9) as well as necessary existence of massive photons and gravitons.

We may expect that the use of the Egs. (25) , (45), (46) allows to eliminate the quadratic divergences in the
triangular anomaly for the graviton-photon-photon interaction [14].

If we assume that the gravitational interactions are described by Eq. (46) then at short distances the interactions are
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relaxed (in accordance with eq. (38)) and we may conclude, for example, that the existence of the black holes becomes
problematic. But the complete solution of the question on the existence of black holes is possible in the quantum theory
of the gravitation.

KINDS OF ELEMENTARY PARTICLES

Consider the distribution of the elementary particles in the kinds (or the dynasties). For the photon and gluon we
have that m, is equal to zero. Since for the particle of integer spin N >3, two (or greater) massive members of the
photon kind must exist. They must have zero electric charge, J” =17, C =-1. These particles must contribute to the
amplitudes of the reactions e'e” —>e'e, e'e — u'u , e'e — hadrons at high energies and lead to the resonance
behavior. We can expect that the coupling constants for the interactions of these members of the photonic kind with the
leptons and the hadrons of the same electric charges must be equal. Therefore, the vector mesons p, , ¢, J/w cannot
be the members of the photonic kind. Similarly, in the gluonic kind two (or greater) massive colored particles must
exist. Besides, three (or greater) massive members must exist in the Z° - and W* - kinds. In relations with the

necessary existence of massive photons and gluons such questions arise: 1) is the gauge invariance for massive photons
and gluons possible or not? 2) is the scaling in deep inelastic lepton — hadron scattering at higher energies exist or not?

1 . . . . .
It has been shown that for the 5" spin particles the number of the kind members (i.e. generations) must be equal

to 5 (or greater). We assume that there exist electronic kind (e, =e, e, = 1, ¢, =7, ¢,, €5, ...), the neutrinic kind

(v] =V,,V, =V

V7

v, = vz,v4,v5,...), three kinds of the coloured up-quarks (ul =u, U, =c, Uy =t, u, ,us,...), and three
kinds of the coloured down-quarks (d, =d,d,=s, d,=b,d,,d;,...). Note that in our approach only one neutrino

may be massless. The higher members of the electronic and quark kinds can decay. For example, e, and e, can decay
into evv, uvv (similarly to 4 —>evv), and v+ hadrons. We can assume the possibility of radiative decays

e,,e;—> [y or e,e; —> uyy. We can expect that such interactions of higher Z° and W* will be fairly weak in
comparison with the interactions of Z = Z°(92.4 GeV) and W," =W (81 GeV), as consequence of large masses of
higher Z° and W*. We may assume that: i) Z; or Z; or W, or W, can interact with right currents; ii) the
interactions of Z] or Z; with fermion may be determined by the mixing matrix similar to the Kobayashi — Maskawa
matrix and Z) or Z; can induce the transitions between the fermions of different generations (like to the s — W, u -
transition). Therefore in addition to the investigations of the decays Z;S — u" X [2] it is of interest the study of the

decays ij — u*e* X, which are forbidden in the Standard Model. Note that in our approach the massive photons

0

(755 V3o ) as well as Z3,Z7,... can decay into "4 X . But the , and y, cannot decay into e”z* X .

If higher neutrino, are enough heavy then fairly exotic decays v, ; — euv, , become possible.

Since for fermions N >5 the Kobayashi-Maskawa matrix must have the fifth (or greater) order. This can be
important for the effects of CP - violation.
Possibly the leptons and the quarks from the fourth and fifth generations can be observed in Fermilab or LHC.

CONCLUSION

We have shown that the integrals for the Green functions of the Klein-Gordon and Dirac equations diverge as
they have different values at different fashions of the calculations. The partial differential equations of the degree
greater than four must be considered to derive the Green functions with convergent integrals. The generalizations of the
Klein-Gordon and Dirac equations have been proposed.

It has been shown that the Green functions of the proposed equations of the higher degrees are continuous
functions, i.e., they have no any singularities in all the time — space. In particular, the interaction potentials have no
singularities. It has been shown that in our approach the interaction forces must be proportional to the distances between
particles at the short distances. We have derived that the interaction potentials must have the oscillatory form at short
distances. It may be assumed that all interactions must be relaxed at short distances.

The solutions of the generalized homogeneous Klein-Gordon and Dirac equations are the sums of the terms
corresponding to the different particles of different masses which belong to different generations.

The minimal number of the generations for bosons N, >3 and fermions N, >5. We may assume that these

numbers are for kinds of the elementary particles such as electronic, neutrinic, up-quarks, down-quarks, photonic, Z°-,
W* -, gluonic, gravitonic kinds (and possibly the kind including the Higgs boson). For the composite particles the
minimal degrees of Egs. (9) (25) can be great than 2N, and N, respectively. We consider the degrees of these

equations for the 7*-mesons and the nucleous. As in the quark model z*-meson consists of the u -quark and d -
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antiquark, we may assume that the each particle from the z* -kind consist of one up-quark (u -, or c¢-, or ¢ -quark, or
u, or u,...) and one down-antiquark (E -, 0r s-, b -antiquark, or ds,or ds ,...).Thus the minimal degree of Eq. (9)
for the particles from 7™ - kinds is equal 2N (7" - kinds)= 2N i (i.e., the number of the generations in the 7" -kinds
equals N; =25).The z*-kind include 7*-, K* -, D*(1869)-mesons.

As it is known the proton consists of two u -quark and one d -quark. Therefore, we assume that particles from

L . . 2 .
protonic kind consist of two up-quarks (electric charge QO :E’ where eis the proton charge) and one down-quark

1 . . . . .
(Q = —gj . We begin from the consideration of one pair of u - and d - quarks. Then we can use the representation of

the SU (4, FS ) -symmetry. From the Pauli principle for three such quarks it follows the representation of SU (4, FS ) -

group must be symmetric with the component number 4-5-6/1-2-3=20. The expansion of this representation with
respect to the representations of the SU (2, F)xSU (2, S) -group is given by 20 =4x4+2x2, which correspond to

the A -isobar (the %-spin) and the nucleon (the %—spin). To derive the number of the generations in the protonic kind

we consider the product of N, (for down-quarks) times N, (N Tt 1)/ 2 (the number of symmetric states for two quarks

from - quark kind). As result we derive N (proton kind)=N (neutron kind) > N ? (N ¢ +l)/ 2 . In particular, we have
N (proton kind)=N (neutron kind)>75 for N, =5. It is the number of the generations for the protonic kind and

simultaneously it is the degree of Eq. (25). The protonic kind includes such known particles as
p, >, 7(1189), A7 (2285).
From the consideration of the particle kinds we may conclude that the classification of the quarks and the hadrons

must be changed.
In our approach the propagators of the bosons and the fermions decrease as (q2 )_N" and (q2 )_N’ ”

as ‘qz‘ -0,
respectively. Therefore, we may expect that the renormalizations will be finite in our approach. In addition the number
of the coupling constants reduces, e.g., the interactions of all the particles from the pionic kind (25 or greater particles)
with the particles from the protonic and the neutronic kinds (75 or greater particles) is described by one coupling
constant (at known the quark masses).

Howewer, to show these results the number of tasks and problems must be solved. In particular, the Lagrangians
which lead to Egs. (9), (25), (41), (45), (46) must be derived.

These Lagrangians can be used to obtain the energy-momentum tensors and to study the invariance under the
gauge transformations for the particles from the photonic and gluonic kinds, which include massless particles (photon
and gluons) and the massive particles. The S -matrix must be derived to calculate the reaction amplitudes. Besides, the

known results of the Standerd Model (as well as the results of SU (3,F )-symmetry) must be reproduced in our
approach.

Now we present same consequences of Egs. (9), (25):
1. The massive photons (, or y,)or Z) or Z{ can decay into x4 X observed in Ref. [2]. The investigations of
the decays into £“e* X may be of importance to separate the possible manifestations of massive photons and heavy Z°
(Z) or Z7,or...).
2. One neutrino may be massless and four (or greater) neutrinos must be massive.
3. The Kobayashi-Maskawa mixing matrix must have fifth (or greater) order. It may be important for the effects of

the CP — violation.
4. Inrelation with necessary existence of heavy gluons the question on the scaling at higher energies can arise.

5. If higher neutrinos are enough heavy then the fairly exotic decay v, ; — e 47v,, may be possible.
6. In spite of necessary existence of massive photons the results developed in large distance physics (in such as the

solid state physics, the plasma physics, the statistical physics, the atomic physics, the low energy nuclear physics)
practically do not change.
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